Skip to main content
Log in

Synthesis of surface controlled nickel/palladium hydride nanodendrites with high performance in benzyl alcohol oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Benzaldehyde byproduct is an imperative intermediate in the production of fine chemicals and additives. Tuning selectivity to benzaldehyde is therefore critical in alcohol oxidation reactions at the industrial level. Herein, we report a simple but innovative method for the synthesis of palladium hydride and nickel palladium hydride nanodendrites with controllable morphology, high stability, and excellent catalytic activity. The synthesized dendrites can maintain the palladium hydride phase even after their use in the chosen catalytic reaction. Remarkably, the high surface area morphology and unique interaction between nickel-rich surface and palladium hydride (β-phase) of these nanodendrites are translated in an enhanced catalytic activity for benzyl alcohol oxidation reaction. Our Ni/PdH0.43 nanodendrites demonstrated a high selectivity towards benzaldehyde of about 92.0% with a conversion rate of 95.4%, showing higher catalytic selectivity than their PdH0.43 counterparts and commercial Pd/C. The present study opens the door for further exploration of metal/metal-hydride nanostructures as next-generation catalytic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

    Article  Google Scholar 

  2. Wu, Z. C.; Zhang, Y.; Wang, B.; Qian, G. X.; Tao, T. X. Synthesis of palladium dendritic nanostructures on amidoxime modified polyacrylonitrile fibers through a complexing-reducing method. Mater. Sci. Eng. B 2013, 178, 923–929.

    Article  Google Scholar 

  3. Zhu, G. M.; Jiang, Y. Y.; Lin, F.; Zhang, H.; Jin, C. H.; Yuan, J.; Yang, D. R.; Zhang, Z. In situ study of the growth of two-dimensional palladium dendritic nanostructures using liquid-cell electron microscopy. Chem. Commun. 2014, 50, 9447–9450.

    Article  Google Scholar 

  4. Eid, K.; Ahmad, Y. H.; Yu, H. J.; Li, Y. H.; Li, X. N.; AlQaradawi, S. Y.; Wang, H. L.; Wang, L. Rational one-step synthesis of porous PtPdRu nanodendrites for ethanol oxidation reaction with a superior tolerance for CO-poisoning. Nanoscale 2017, 9, 18881–18889.

    Article  Google Scholar 

  5. Lu, L. F.; Chen, S. T.; Thota, S.; Wang, X. D.; Wang, Y. C.; Zou, S. H.; Fan, J.; Zhao, J. Composition controllable synthesis of PtCu nanodendrites with efficient electrocatalytic activity for methanol oxidation induced by high index surface and electronic interaction. J. Phys. Chem. C 2017, 121, 19796–19806.

    Article  Google Scholar 

  6. da Silva, A. G. M.; Rodrigues, T. S.; Slater, T. J. A.; Lewis, E. A.; Alves, R. S.; Fajardo, H. V.; Balzer, R.; da Silva, A. H. M.; de Freitas, I. C.; Oliveira, D. C. et al. Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings. ACS Appl. Mater. Interfaces 2015, 7, 25624–25632.

    Article  Google Scholar 

  7. Fu, S. F.; Zhu, C. Z.; Shi, Q. R.; Xia, H. B.; Du, D.; Lin, Y. H. Highly branched PtCu bimetallic alloy nanodendrites with superior electrocatalytic activities for oxygen reduction reactions. Nanoscale 2016, 8, 5076–5081.

    Article  Google Scholar 

  8. Zhang, X. F.; Zhu, X. Y.; Feng, J. J.; Wang, A. J. Solvothermal synthesis of N-doped graphene supported PtCo nanodendrites with highly catalytic activity for 4-nitrophenol reduction. Appl. Surf. Sci. 2018, 428, 798–808.

    Article  Google Scholar 

  9. Pillai, U. R.; Sahle-Demessie, E. Sn-exchanged hydrotalcites as catalysts for clean and selective Baeyer–Villiger oxidation of ketones using hydrogen peroxide. J. Mol. Catal. A: Chem. 2003, 191, 93–100.

    Article  Google Scholar 

  10. Meng, C.; Yang, K.; Fu, X. Z.; Yuan, R. S. Photocatalytic oxidation of benzyl alcohol by homogeneous CuCl2/solvent: A model system to explore the role of molecular oxygen. ACS Catal. 2015, 5, 3760–3766.

    Article  Google Scholar 

  11. Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.; Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight, D. W.; Hutchings, G. J. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 2006, 311, 362–365.

    Article  Google Scholar 

  12. Galvanin, F.; Sankar, M.; Cattaneo, S.; Bethell, D.; Dua, V.; Hutchings, G. J.; Gavriilidis, A. On the development of kinetic models for solvent-free benzyl alcohol oxidation over a gold-palladium catalyst. Chem. Eng. J. 2018, 342, 196–210.

    Article  Google Scholar 

  13. Pillai, U. R.; Sahle-Demessie, E. Oxidation of alcohols over Fe3+/montmorillonite-K10 using hydrogen peroxide. Appl. Catal. A: Gen. 2003, 245, 103–109.

    Article  Google Scholar 

  14. Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic Methodology Including Biochemical Processes, Academic Press: New York, 1981.

  15. Long, R.; Mao, K. K.; Ye, X. D.; Yan, W. S.; Huang, Y. B.; Wang, J. Y.; Fu, Y.; Wang, X. S.; Wu, X. J.; Xie, Y. et al. Surface facet of palladium nanocrystals: A key parameter to the activation of molecular oxygen for organic catalysis and cancer treatment. J. Am. Chem. Soc. 2013, 135, 3200–3207.

    Article  Google Scholar 

  16. Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Hydroxyapatite-supported palladium nanoclusters: A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. J. Am. Chem. Soc. 2004, 126, 10657–10666.

    Article  Google Scholar 

  17. Liang, H. P.; Lawrence, N. S.; Wan, L. J.; Jiang, L.; Song, W. G.; Jones, T. G J. Controllable synthesis of hollow hierarchical palladium nanostructures with enhanced activity for proton/hydrogen sensing. J. Phys. Chem. C 2008, 112, 338–344.

    Article  Google Scholar 

  18. Yamauchi, M.; Ikeda, R.; Kitagawa, H.; Takata, M. Nanosize effects on hydrogen storage in palladium. J. Phys. Chem. C 2008, 112, 3294–3299.

    Article  Google Scholar 

  19. Kumara, L. S. R.; Sakata, O.; Kobayashi, H.; Song, C.; Kohara, S.; Ina, T.; Yoshimoto, T.; Yoshioka, S.; Matsumura, S.; Kitagawa, H. Hydrogen storage and stability properties of Pd-Pt solid-solution nanoparticles revealed via atomic and electronic structure. Sci. Rep. 2017, 7, 14606.

    Article  Google Scholar 

  20. Zhang, J. W.; Chen, M. S.; Li, H. Q.; Li, Y. J.; Ye, J. Y.; Cao, Z. M.; Fang, M. L.; Kuang, Q.; Zheng, J.; Xie, Z. X. Stable palladium hydride as a superior anode electrocatalyst for direct formic acid fuel cells. Nano Energy 2018, 44, 127–134.

    Article  Google Scholar 

  21. Zhu, Y. Z.; Gao, C.; Bai, S.; Chen, S. M.; Long, R.; Song, L.; Li, Z. Q.; Xiong, Y. J. Hydriding Pd cocatalysts: An approach to giant enhancement on photocatalytic CO2 reduction into CH4. Nano Res. 2017, 10, 3396–3406.

    Article  Google Scholar 

  22. Lu, Y. Z.; Wang, J.; Peng, Y. C.; Fisher, A.; Wang, X. Highly efficient and durable Pd hydride nanocubes embedded in 2D amorphous NiB nanosheets for oxygen reduction reaction. Adv. Energy Mater. 2017, 7, 1700919.

    Article  Google Scholar 

  23. Weng, Z.; Liu, W.; Yin, L. C.; Fang, R. P.; Li, M.; Altman, E. I.; Fan, Q.; Li, F.; Cheng, H. M.; Wang, H. L. Metal/oxide interface nanostructures generated by surface segregation for electrocatalysis. Nano Lett. 2015, 15, 7704–7710.

    Article  Google Scholar 

  24. Yi, W. Z.; Yuan, W. T.; Meng, Y.; Zou, S. H.; Zhou, Y. H.; Hong, W.; Che, J. W.; Hao, M. J.; Ye, B.; Xiao, L. P. et al. A rational solid-state synthesis of supported Au-Ni bimetallic nanoparticles with enhanced activity for gas-phase selective oxidation of alcohols. ACS Appl. Mater. Interfaces 2017, 9, 31853–31860.

    Article  Google Scholar 

  25. Gao, L. J.; Wang, Y.; Li, H. B.; Li, Q. H.; Ta, N.; Zhuang, L.; Fu, Q.; Bao, X. H. A nickel nanocatalyst within a h-BN shell for enhanced hydrogen oxidation reactions. Chem. Sci. 2017, 8, 5728–5734.

    Article  Google Scholar 

  26. Feng, Y. G.; Shao, Q.; Ji, Y. J.; Cui, X. N.; Li, Y. Y.; Zhu, X.; Huang, X. Q. Surface-modulated palladium-nickel icosahedra as high-performance non-platinum oxygen reduction electrocatalysts. Sci. Adv. 2018, 4, eaap8817.

    Article  Google Scholar 

  27. Obradovic, M. D.; Stancic, Z. M.; Lacnjevac, U. C.; Radmilovic, V. V.; Gavrilovic-Wohlmuther, A.; Radmilovic, V. R.; Gojkovic, S. L. Electrochemical oxidation of ethanol on palladium-nickel nanocatalyst in alkaline media. Appl. Catal. B: Environ. 2016, 189, 110–118.

    Article  Google Scholar 

  28. Jiang, S. F.; Yi, B. L.; Zhao, Q.; Yu, H. M.; Shao, Z. G. Palladium-nickel catalysts based on ordered titanium dioxide nanorod arrays with high catalytic peformance for formic acid electro-oxidation. RSC Adv. 2017, 7, 11719–11723.

    Article  Google Scholar 

  29. Dimitratos, N.; Lopez-Sanchez, J. A.; Morgan, D.; Carley, A. F.; Tiruvalam, R.; Kiely, C. J.; Bethell, D.; Hutchings, G J. Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilisation. Phys. Chem. Chem. Phys. 2009, 11, 5142–5153.

    Article  Google Scholar 

  30. Zhao, Z. P.; Huang, X. Q.; Li, M. F.; Wang, G. M.; Lee, C.; Zhu, E. B.; Duan, X. F.; Huang, Y. Synthesis of stable shape-controlled catalytically active β-palladium hydride. J. Am. Chem. Soc. 2015, 137, 15672–15675.

    Article  Google Scholar 

  31. Wolf, R. J.; Lee, M. W.; Davis, R. C.; Fay, P. J.; Ray, J. R. Pressure-composition isotherms for palladium hydride. Phys. Rev. B 1993, 48, 12415–12418.

    Article  Google Scholar 

  32. Flanagan, T. B.; Oates, W. A. The palladium-hydrogen system. Annu. Rev. Mater. Sci. 1991, 21, 269–304.

    Article  Google Scholar 

  33. Eastman, J. A.; Thompson, L. J.; Kestel, B. J. Narrowing of the palladium- hydrogen miscibility gap in nanocrystalline palladium. Phys. Rev. B 1993, 48, 84–92.

    Article  Google Scholar 

  34. Schirber, J. E.; Morosin, B. Lattice constants of β-PdHx and β-PdDx with x near 1.0. Phys. Rev. B 1975, 12, 117–118.

    Article  Google Scholar 

  35. Xue, Z. H.; Li, M. Q.; Rao, H. H.; Yin, B.; Zhou, X. B.; Liu, X. H.; Lu, X. Q. Phase transformation-controlled synthesis of CuO nanostructures and their application as an improved material in a carbon-based modified electrode. RSC Adv. 2016, 6, 12829–12836.

    Article  Google Scholar 

Download references

Acknowledgements

Y. H., X. D., Z. Z., and M. F. E. acknowledge the support from Office of Naval Research by the grant number of N000141812155. J. Z. and J. M. acknowledge the support from Office of Basic Energy Sciences of the US DOE (No. DE-SC0010378). The HAADF-STEM imaging and EDS mapping with Titan X were performed at the Molecular Foundry, which is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. DOE under Contract No. DE-AC02—05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Huang.

Electronic Supplementary Material

12274_2019_2413_MOESM1_ESM.pdf

Synthesis of surface controlled nickel/palladium hydride nanodendrites with high performance in benzyl alcohol oxidation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Flores Espinosa, M.M., Zhou, J. et al. Synthesis of surface controlled nickel/palladium hydride nanodendrites with high performance in benzyl alcohol oxidation. Nano Res. 12, 1467–1472 (2019). https://doi.org/10.1007/s12274-019-2413-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2413-9

Keywords

Navigation