Skip to main content
Log in

Room-temperature ligancy engineering of perovskite electrocatalyst for enhanced electrochemical water oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Perovskite oxides are significant candidates to develop electrochemical catalysts for water oxidation in consideration of their high catalysis capacity, low costing and excellent stability. Rational design of coordination structure and overcoming poor electronic transport are regarded as critical factors for outstanding perovskite-based oxygen evolution reaction (OER) catalysts. Herein, we report a mild chemical oxidation method to realize ligancy engineering from strongly-correlated brownmillerite Sr2Co2O5 to perovskite phase Sr2Co2O55, along with abundant oxygen vacancies formation and greatly boosted electric conductivity, which helps to form the active species of Co hydroxide/oxide on the surface of catalysts. The coupling effect of catalytic kinetics and unimpeded electronic movement brings high OER activities in Sr2Co2O55with a low onset potential and a small Tafel slope. Our work not only displays in-depth understanding into the relationship among catalysis performance and multiple physical degrees of freedom, but also paves a new path to develop high-efficient electrochemical catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khan, M. A.; Zhao, H. B.; Zou, W. W.; Chen, Z.; Cao, W. J.; Fang, J. H.; Xu, J. Q.; Zhang, L.; Zhang, J. J. Recent progresses in electrocatalysts for water electrolysis. Electrochem. Energy Rev. 2018, 1, 483–530.

    Article  Google Scholar 

  2. Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

    Article  Google Scholar 

  3. Tan, P.; Liu, M. L.; Shao, Z. P.; Ni, M. Recent advances in perovskite oxides as electrode materials for nonaqueous lithium–oxygen batteries. Adv. Energy Mater. 2017, 7, 1602674.

    Article  Google Scholar 

  4. Song, F.; Bai, L. C.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. L. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance. J. Am. Chem. Soc. 2018, 140, 7748–7759.

    Article  Google Scholar 

  5. Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.

    Article  Google Scholar 

  6. Rana, M.; Mondal, S.; Sahoo, L.; Chatterjee, K.; Karthik, P. E.; Gautam, U. K. Emerging materials in heterogeneous electrocatalysis involving oxygen for energy harvesting. ACS Appl. Mater. Interfaces 2018, 10, 33737–33767.

    Article  Google Scholar 

  7. Royer, S.; Duprez, D.; Can, F.; Courtois, X.; Batiot-Dupeyrat, C.; Laassiri, S.; Alamdari, H. Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. Chem. Rev. 2014, 114, 10292–10368.

    Article  Google Scholar 

  8. Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751–756.

    Article  Google Scholar 

  9. Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546–550.

    Article  Google Scholar 

  10. Han, B. H.; Grimaud, A.; Giordano, L.; Hong, W. T.; Diaz-Morales, O.; Yueh-Lin, L.; Hwang, J.; Charles, N.; Stoerzinger, K. A.; Yang, W. L. et al. Iron-based perovskites for catalyzing oxygen evolution reaction. J. Phys. Chem. C 2018, 122, 8445–8454.

    Article  Google Scholar 

  11. Mefford, J. T.; Rong, X.; Abakumov, A. M.; Hardin, W. G; Dai, S.; Kolpak, A. M.; Johnston, K. P.; Stevenson, K. J. Water electrolysis on La1-xSrxCoO3-δ perovskite electrocatalysts. Nat. Commun. 2016, 7, 11053.

    Article  Google Scholar 

  12. Lee, J. G.; Hwang, J.; Hwang, H. J.; Jeon, O. S.; Jang, J.; Kwon, O.; Lee, Y.; Han, B.; Shul, Y. G. A new family of perovskite catalysts for oxygen-evolution reaction in alkaline media: BaNiO3 and BaNi0.83O2.5. J. Am. Chem. Soc. 2016, 138, 3541–3547.

    Article  Google Scholar 

  13. Malkhandi, S.; Trinh, P.; Manohar, A. K.; Manivannan, A.; Balasubramanian, M.; Prakash, G. K. S.; Narayanan, S. R. Design insights for tuning the electrocatalytic activity of perovskite oxides for the oxygen evolution reaction. J. Phys. Chem. C 2015, 119, 8004–8013.

    Article  Google Scholar 

  14. Kim, N. I.; Sa, Y. J.; Yoo, T. S.; Choi, S. R.; Afzal, R. A.; Choi, T.; Seo, Y. S.; Lee, K. S.; Hwang, J. Y.; Choi, W. S. et al. Oxygen-deficient triple perovskites as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions. Sci. Adv. 2018, 4, eaap9360.

    Article  Google Scholar 

  15. Rong, X.; Parolin, J.; Kolpak, A. M. A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 2016, 6, 1153–1158.

    Article  Google Scholar 

  16. Wei, C.; Feng, Z. X.; Scherer, G. G.; Barber, J.; Shao-Horn, Y.; Xu, Z. J. Cations in octahedral sites: A descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 2017, 29, 1606800.

    Article  Google Scholar 

  17. Grimaud, A.; Carlton, C. E.; Risch, M.; Hong, W. T.; May, K. J.; Shao-Horn, Y. Oxygen evolution activity and stability of Ba6Mn5O16, Sr4Mn2CoO9, and Sr6Co5O15: The influence of transition metal coordination. J. Phys. Chem. C 2013, 117, 25926–25932.

    Article  Google Scholar 

  18. Bothra, N.; Rai, S.; Pati, S. K. Tailoring Ca2Mn2O5 based perovskites for improved oxygen evolution reaction. ACS Appl. Energy Mater. 2018, 1, 6312–6319.

    Article  Google Scholar 

  19. Tong, Y.; Wu, J. C.; Chen, P. Z.; Liu, H. F.; Chu, W. S.; Wu, C. Z.; Xie, Y. Vibronic superexchange in double perovskite electrocatalyst for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc. 2018, 140, 11165–11169.

    Article  Google Scholar 

  20. Kim, J.; Yin, X.; Tsao, K. C.; Fang, S. H.; Yang, H. Ca2Mn2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction. J. Am. Chem. Soc. 2014, 136, 14646–14649.

    Article  Google Scholar 

  21. Grimaud, A.; May, K. J.; Carlton, C. E.; Lee, Y. L.; Risch, M.; Hong, W. T.; Zhou, J. G.; Shao-Horn, Y. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 2013, 4, 2439.

    Article  Google Scholar 

  22. Guo, Y. Q.; Tong, Y.; Chen, P. Z.; Xu, K.; Zhao, J. Y.; Lin, Y.; Chu, W. S.; Peng, Z. M.; Wu, C. Z.; Xie, Y. Engineering the electronic state of a perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction. Adv. Mater. 2015, 27, 5989–5994.

    Article  Google Scholar 

  23. Takeda, Y.; Kanno, R.; Kondo, T.; Yamamoto, O.; Taguchi, H.; Shimada, M.; Koizumi, M. Properties of SrMO3-δ (M = Fe, Co) as oxygen electrodes in alkaline solution. J. Appl. Electrochem. 1982, 12, 275–280.

    Article  Google Scholar 

  24. Jeen, H.; Bi, Z. H.; Choi, W. S.; Chisholm, M. F.; Bridges, C. A.; Paranthaman, M. P.; Lee, H. N. Orienting oxygen vacancies for fast catalytic reaction. Adv. Mater. 2013, 25, 6459–6463.

    Article  Google Scholar 

  25. Mufioz, A.; de la Calle, C.; Alonso, J. A.; Botta, P. M.; Pardo, V.; Baldomir, D.; Rivas, J. Crystallographic and magnetic structure of SrCoO25 brownmillerite: Neutron study coupled with band-structure calculations. Phys. Rev. B 2008, 78, 054404.

    Article  Google Scholar 

  26. Bezdicka, P.; Wattiaux, A.; Grenier, J. C.; Pouchard, M.; Hagenmuller, P. Preparation and characterization of fully stoichiometric SrCoO3 by electrochemical oxidation. Z. Anorg. Allg. Chem. 1993, 619, 7–12.

    Article  Google Scholar 

  27. Le Toquin, R.; Paulus, W.; Cousson, A.; Prestipino, C.; Lamberti, C. Time-resolved in situ studies of oxygen intercalation into SrCoO25, performed by neutron diffraction and X-ray absorption spectroscopy. J. Am. Chem. Soc. 2006, 128, 13161–13174.

    Article  Google Scholar 

  28. Piovano, A.; Agostini, G.; Frenkel, A. I.; Bertier, T.; Prestipino, C.; Ceretti, M.; Paulus, W.; Lamberti, C. Time resolved in situ XAFS study of the electrochemical oxygen intercalation in SrFeO25 brownmillerite structure: Comparison with the homologous SrCoO25 system. J. Phys. Chem. C 2011, 115, 1311–1322.

    Article  Google Scholar 

  29. Takeda, T.; Yamaguchi, Y.; Watanabe, H. Magnetic structure of SrCoO25. J. Phys. Soc. Jpn. 1972, 33, 970–972.

    Article  Google Scholar 

  30. Gao, Y.; Wang, J. J.; Wu, L.; Bao, S. Y.; Yang, S.; Lin, Y. H.; Nan, C. W. Tunable magnetic and electrical behaviors in perovskite oxides by oxygen octahedral tilting. Sci. China Mater. 2015, 58, 302–312.

    Article  Google Scholar 

  31. Lee, P. A.; Nagaosa, N.; Wen, X. G. Doping a mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 2004, 78, 17–85.

    Article  Google Scholar 

  32. Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

    Article  Google Scholar 

  33. Peng, X.; Guo, Y. Q.; Yin, Q.; Wu, J. C.; Zhao, J. Y.; Wang, C. M.; Tao, S.; Chu, W. S.; Wu, C. Z.; Xie, Y. Double-exchange effect in two-dimensional MnO2 nanomaterials. J. Am. Chem. Soc. 2017, 139, 5242–5248.

    Article  Google Scholar 

  34. De Gennes, P. G. Effects of double exchange in magnetic crystals. Phys. Rev. 1960, 118, 141–154.

    Article  Google Scholar 

  35. Hong, W. T.; Risch, M.; Stoerzinger, K. A.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 2015, 8, 1404–1427.

    Article  Google Scholar 

  36. Wang, H. Y.; Hung, S. F.; Chen, H. Y.; Chan, T. S.; Chen, H. M.; Liu, B. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 2015, 138, 36–39.

    Article  Google Scholar 

  37. Riva, M.; Kubicek, M.; Hao, X. F.; Franceschi, G.; Gerhold, S.; Schmid, M.; Hutter, H.; Fleig, J.; Franchini, C.; Yildiz, B. et al. Influence of surface atomic structure demonstrated on oxygen incorporation mechanism at a model perovskite oxide. Nat. Commun. 2018, 9, 3710.

    Article  Google Scholar 

  38. Cheng, X.; Fabbri, E.; Nachtegaal, M.; Castelli, I. E.; Kazzi, M. E.; Haumont, R.; Marzari, N.; Schmidt, T. J. Oxygen evolution reaction on La1-xSrxCoO3 perovskites: A combined experimental and theoretical study of their structural, electronic, and electrochemical properties. Chem. Mater. 2015, 27, 7662–7672.

    Article  Google Scholar 

  39. Fabbri, E.; Nachtegaal, M.; Binninger, T.; Cheng, X.; Kim, B. J.; Durst, J.; Bozza, F.; Graule, T.; Schäublin, R.; Wiles, L. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 2017, 16, 925–931.

    Article  Google Scholar 

  40. Chen, P. Z.; Tong, Y.; Wu, C. Z.; Xie, Y. Surface/interfacial engineering of inorganic low-dimensional electrode materials for electrocatalysis. Acc. Chem. Res. 2018, 57, 2857–2866.

    Article  Google Scholar 

  41. Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2017, 2, 1937–1938.

    Article  Google Scholar 

  42. Xu, K.; Cheng, H.; Liu, L. Q.; Lv, H. F.; Wu, X. J.; Wu, C. Z.; Xie, Y. Promoting active species generation by electrochemical activation in alkaline media for efficient electrocatalytic oxygen evolution in neutral media. Nano Lett. 2016, 17, 578–583.

    Article  Google Scholar 

  43. Chen, P. Z.; Xu, K.; Fang, Z. W.; Tong, Y.; Wu, J. C.; Lu, X. L.; Peng, X.; Ding, H.; Wu, C. Z.; Xie, Y. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 54, 14710–14714.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of Chnia (No. 2017YFA0207301), the National Natural Science Foundation of China (Nos. U1632154, 21890751, 91745113, 11621063, 21601172, and J1030412), National Program for Support of Top-notch Young Professionals, the Fundamental Research Funds for the Central Universities (No. WK2090050043), Youth Innovation Promotion Association of CAS (No. 2018500), Users with Excellence Project of Hefei Science Center (No. CAS2018HSC-UE002). We appreciate the support from the USTC Center for Micro and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changzheng Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Guo, Y., Liu, H. et al. Room-temperature ligancy engineering of perovskite electrocatalyst for enhanced electrochemical water oxidation. Nano Res. 12, 2296–2301 (2019). https://doi.org/10.1007/s12274-019-2409-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2409-5

Keywords

Navigation