Skip to main content
Log in

Recent progress on in situ characterizations of electrochemically intercalated transition metal dichalcogenides

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Layered transition metal dichalcogenides (TMDCs) have been extensively studied owing to their unique physical and chemical properties. Weak van der Waals (vdW) interactions between the stacking layers of TMDCs allow intercalation of various species including monovalent alkali, divalent alkaline earth and multivalent metal ions, zero-valent transition metals, as well as organic molecules, all of which can drastically alter fundamental properties of the TMDCs. The urge to understand the phenomena and the desire to exploit them for applications have inspired a great deal of investigations. A large portion of the mystery has been unveiled over the past decade of intense research; however, many questions remain open and require further explorations. This review is concerned with investigations on structural and electronic evolution of TMDCs driven by electrochemically controlled intercalations. Herein, we aim to survey the recent advances and experimental platforms for monitoring the intercalation processes in situ by utilizing nanodevices. In addition, several inquiries and prospects are outlined in a broader context for future avenues of studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.

    Google Scholar 

  2. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Google Scholar 

  3. Wilson, J. A.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335.

    Google Scholar 

  4. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

    Google Scholar 

  5. Wang, F.; Zhang, Y. B.; Tian, C. S.; Girit, C.; Zettl, A.; Crommie, M.; Shen, Y. R. Gate-variable optical transitions in graphene. Science 2008, 320, 206–209.

    Google Scholar 

  6. Li, Z. Q.; Henriksen, E. A.; Jiang, Z.; Hao, Z.; Martin, M. C.; Kim, P.; Stormer, H. L.; Basov, D. N. Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys. 2008, 4, 532–535.

    Google Scholar 

  7. Feng, J.; Qian, X. F.; Huang, C. W.; Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 2012, 6, 866–872.

    Google Scholar 

  8. Hor, Y. S.; Williams, A. J.; Checkelsky, J. G.; Roushan, P.; Seo, J.; Xu, Q.; Zandbergen, H. W.; Yazdani, A.; Ong, N. P.; Cava, R. J. Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator. Phys. Rev. Lett. 2010, 104, 057001.

    Google Scholar 

  9. Morosan, E.; Zandbergen, H. W.; Dennis, B. S.; Bos, J. W. G.; Onose, Y.; Klimczuk, T.; Ramirez, A. P.; Ong, N. P.; Cava, R. J. Superconductivity in CuxTiSe2. Nat. Phys. 2006, 2, 544–550.

    Google Scholar 

  10. Profeta, G.; Calandra, M.; Mauri, F. Phonon-mediated superconductivity in graphene by lithium deposition. Nat. Phys. 2012, 8, 131–134.

    Google Scholar 

  11. Zhang, R. Y.; Tsai, I. L.; Chapman, J.; Khestanova, E.; Waters, J.; Grigorieva, I. V. Superconductivity in potassium-doped metallic polymorphs of MoS2. Nano Lett. 2016, 16, 629–636.

    Google Scholar 

  12. Ye, J. T.; Zhang, Y. J.; Akashi, R.; Bahramy, M. S.; Arita, R.; Iwasa, Y. Superconducting dome in a gate-tuned band insulator. Science 2012, 338, 1193–1196.

    Google Scholar 

  13. Morosan, E.; Zandbergen, H. W.; Li, L.; Lee, M.; Checkelsky, J. G.; Heinrich, M.; Siegrist, T.; Ong, N. P.; Cava, R. J. Sharp switching of the magnetization in Fe1/4TaS2. Phys. Rev. B 2007, 75, 104401.

    Google Scholar 

  14. Hardy, W. J.; Chen, C. W.; Marcinkova, A.; Ji, H.; Sinova, J.; Natelson, D.; Morosan, E. Very large magnetoresistance in Fe0.28TaS2 single crystals. Phys. Rev. B 2015, 91, 054426.

    Google Scholar 

  15. Koski, K. J.; Cha, J. J.; Reed, B. W.; Wessells, C. D.; Kong, D. S.; Cui, Y. High-density chemical intercalation of zero-valent copper into Bi2Se3 nanoribbons. J. Am. Chem. Soc. 2012, 134, 7584–7587.

    Google Scholar 

  16. Cha, J. J.; Koski, K. J.; Huang, K. C. Y.; Wang, K. X.; Luo, W. D.; Kong, D. S.; Yu, Z. F.; Fan, S. H.; Brongersma, M. L.; Cui, Y. Two-dimensional chalcogenide nanoplates as tunable metamaterials via chemical intercalation. Nano Lett. 2013, 13, 5913–5918.

    Google Scholar 

  17. Yao, J.; Koski, K. J.; Luo, W. D.; Cha, J. J.; Hu, L. B.; Kong, D. S.; Narasimhan, V. K.; Huo, K. F.; Cui, Y. Optical transmission enhacement through chemically tuned two-dimensional bismuth chalcogenide nanoplates. Nat. Commun. 2014, 5, 5670.

    Google Scholar 

  18. Bao, W. Z.; Wan, J. Y.; Han, X. G.; Cai, X. H.; Zhu, H. L.; Kim, D.; Ma, D. K.; Xu, Y. L.; Munday, J. N.; Drew, H. D. et al. Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat. Commun. 2014, 5, 4224.

    Google Scholar 

  19. Wang, Y. C.; Ou, J. Z.; Balendhran, S.; Chrimes, A. F.; Mortazavi, M.; Yao, D. D.; Field, M. R.; Latham, K.; Bansal, V.; Friend, J. R. et al. Electrochemical control of photoluminescence in two-dimensional MoS2 nanoflakes. ACS Nano 2013, 7, 10083–10093.

    Google Scholar 

  20. Wan, C. L.; Wang, Y. F.; Wang, N.; Norimatsu, W.; Kusunoki, M.; Koumoto, K. Intercalation: Building a natural superlattice for better thermoelectric performance in layered chalcogenides. J. Electron. Mater. 2011, 40, 1271–1280.

    Google Scholar 

  21. Kang, J. S.; Ke, M.; Hu, Y. J. Ionic intercalation in two-dimensional van der Waals materials: In situ characterization and electrochemical control of the anisotropic thermal conductivity of black phosphorus. Nano Lett. 2017, 17, 1431–1438.

    Google Scholar 

  22. Sood, A.; Xiong, F.; Chen, S. D.; Wang, H. T.; Selli, D.; Zhang, J. S.; McClellan, C. J.; Sun, J.; Donadio, D.; Cui, Y. et al. An electrochemical thermal transistor. Nat. Commun. 2018, 9, 4510.

    Google Scholar 

  23. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

    Google Scholar 

  24. Withers, F.; Yang, H.; Britnell, L.; Rooney, A. P.; Lewis, E.; Felten, A.; Woods, C. R.; Sanchez Romaguera, V.; Georgiou, T.; Eckmann, A. et al. Heterostructures produced from nanosheet-based inks. Nano Lett. 2014, 14, 3987–3992.

    Google Scholar 

  25. Wang, H. T.; Lu, Z. Y.; Xu, S. C.; Kong, D. S.; Cha, J. J.; Zheng, G. Y.; Hsu, P. C.; Yan, K.; Bradshaw, D.; Prinz, F. B. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 2013, 110, 19701–19706.

    Google Scholar 

  26. Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

    Google Scholar 

  27. Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227.

    Google Scholar 

  28. Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

    Google Scholar 

  29. Zhou, Y.; Silva, J. L.; Woods, J. M.; Pondick, J. V.; Feng, Q. L.; Liang, Z. X.; Liu, W.; Lin, L.; Deng, B. C.; Brena, B. et al. Revealing the contribution of individual factors to hydrogen evolution reaction catalytic activity. Adv. Mater. 2018, 30, 1706076.

    Google Scholar 

  30. Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313–318.

    Google Scholar 

  31. Zhu, Y.; Peng, L. L.; Fang, Z. W.; Yan, C. S.; Zhang, X.; Yu, G. H. Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv. Mater. 2018, 30, 1706347.

    Google Scholar 

  32. Wan, J. Y.; Bao, W. Z.; Liu, Y.; Dai, J. Q.; Shen, F.; Zhou, L. H.; Cai, X. H.; Urban, D.; Li, Y. Y.; Jungjohann, K. et al. In situ investigations of Li-MoS2 with planar batteries. Adv. Energy Mater. 2015, 5, 1401742.

    Google Scholar 

  33. Zhu, Y.; Qian, Y. M.; Ju, Z. Y.; Peng, L. L.; Yu, G. H. Solvent-dependent intercalation and molecular configurations in metallocene-layered crystal superlattices. Nano Lett. 2018, 18, 6071–6075.

    Google Scholar 

  34. Chen, D. H.; Peng, L. L.; Yuan, Y. F.; Zhu, Y.; Fang, Z. W.; Yan, C. S.; Chen, G.; Shahbazian-Yassar, R.; Lu, J.; Amine, K. et al. Two-dimensional Holey Co3O4 nanosheets for high-rate alkali-ion batteries: From rational synthesis to in situ probing. Nano Lett. 2017, 17, 3907–3913.

    Google Scholar 

  35. Xue, Y. H.; Zhang, Q.; Wang, W. J.; Cao, H.; Yang, Q. H.; Fu, L. Opening two-dimensional materials for energy conversion and storage: A concept. Adv. Energy Mater. 2017, 7, 1602684.

    Google Scholar 

  36. Liang, Y. L.; Yoo, H. D.; Li, Y. F.; Shuai, J.; Calderon, H. A.; Robles Hernandez, F. C.; Grabow, L. C.; Yao, Y. Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett. 2015, 15, 2194–2202.

    Google Scholar 

  37. Yarali, M.; Biçer, E.; Gürsel, S. A.; Yürüm, A. The effect of pH on the interlayer distances of elongated titanate nanotubes and their use as a Li-ion battery anode. Nanotechnology 2016, 27, 015401.

    Google Scholar 

  38. Yarali, M.; Biçer, E.; Gürsel, S. A.; Yürüm, A. Expansion of titanate nanotubes by the use of a surfactant and its improved performance as an anode in Li-ion batteries. Electrochim. Acta 2016, 220, 453–464.

    Google Scholar 

  39. Kashfi-Sadabad, R.; Yazdani, S.; Huan, T. D.; Cai, Z.; Pettes, M. T. Role of oxygen vacancy defects in the electrocatalytic activity of substoichiometric molybdenum oxide. J. Phys. Chem. C 2018, 122, 18212–18222.

    Google Scholar 

  40. Yazdani, S.; Kashfi-Sadabad, R.; Huan, T. D.; Morales-Acosta, M. D.; Pettes, M. T. Polyelectrolyte-assisted oxygen vacancies: A new route to defect engineering in molybdenum oxide. Langmuir 2018, 34, 6296–6306.

    Google Scholar 

  41. Yazdani, S.; Pettes, M. T. Nanoscale self-assembly of thermoelectric materials: A review of chemistry-based approaches. Nanotechnology 2018, 29, 432001.

    Google Scholar 

  42. Dresselhaus, M. S. Intercalation in Layered Materials; Springer Science+ Business Media, LLC: New York, 1986.

    Google Scholar 

  43. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Google Scholar 

  44. Wang, H. T.; Yuan, H. T.; Sae Hong, S.; Li, Y. B.; Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2664–2680.

    Google Scholar 

  45. Wan, J. Y.; Lacey, S. D.; Dai, J. Q.; Bao, W. Z.; Fuhrer, M. S.; Hu, L. B. Tuning two-dimensional nanomaterials by intercalation: Materials, properties and applications. Chem. Soc. Rev. 2016, 45, 6742–6765.

    Google Scholar 

  46. Jung, Y.; Zhou, Y.; Cha, J. J. Intercalation in two-dimensional transition metal chalcogenides. Inorg. Chem. Front. 2016, 3, 452–463.

    Google Scholar 

  47. Wang, L. F.; Xu, Z.; Wang, W. L.; Bai, X. D. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 2014, 136, 6693–6697.

    Google Scholar 

  48. Xiong, F.; Wang, H. T.; Liu, X. G.; Sun, J.; Brongersma, M.; Pop, E.; Cui, Y. Li intercalation in MoS2: In situ observation of its dynamics and tuning optical and electrical properties. Nano Lett. 2015, 15, 6777–6784.

    Google Scholar 

  49. Gao, P.; Wang, L. P.; Zhang, Y. Y.; Huang, Y.; Liu, K. H. Atomic-scale probing of the dynamics of sodium transport and intercalation-induced phase transformations in MoS2. ACS Nano 2015, 9, 11296–11301.

    Google Scholar 

  50. Huang, Q. M.; Li, X. M.; Sun, M. H.; Zhang, L.; Song, C. Z.; Zhu, L.; Chen, P.; Xu, Z.; Wang, W. L.; Bai, X. D. The mechanistic insights into the 2H-1T phase transition of MoS2 upon alkali metal intercalation: From the study of dynamic sodiation processes of MoS2 nanosheets. Adv. Mater. Interfaces 2017, 4, 1700171.

    Google Scholar 

  51. Zhang, J. S.; Yang, A. K.; Wu, X.; van de Groep, J.; Tang, P. Z.; Li, S. R.; Liu, B. F.; Shi, F. F.; Wan, J. Y.; Li, Q. T. et al. Reversible and selective ion intercalation through the top surface of few-layer MoS2. Nat. Commun. 2018, 9, 5289.

    Google Scholar 

  52. Kühne, M.; Börrnert, F.; Fecher, S.; Ghorbani-Asl, M.; Biskupek, J.; Samuelis, D.; Krasheninnikov, A. V.; Kaiser, U.; Smet, J. H. Reversible superdense ordering of lithium between two graphene sheets. Nature 2018, 564, 234–239.

    Google Scholar 

  53. Kühne, M.; Paolucci, F.; Popovic, J.; Ostrovsky, P. M.; Maier, J.; Smet, J. H. Ultrafast lithium diffusion in bilayer graphene. Nat. Nanotechnol. 2017, 12, 895–900.

    Google Scholar 

  54. Zhao, S. Y. F.; Elbaz, G. A.; Bediako, D. K.; Yu, C.; Efetov, D. K.; Guo, Y. S.; Ravichandran, J.; Min, K. A.; Hong, S.; Taniguchi, T. et al. Controlled electrochemical intercalation of graphene/h-BN van der Waals heterostructures. Nano Lett. 2018, 18, 460–466.

    Google Scholar 

  55. Bediako, D. K.; Rezaee, M.; Yoo, H.; Larson, D. T.; Zhao, S. Y. F.; Taniguchi, T.; Watanabe, K.; Brower-Thomas, T. L.; Kaxiras, E.; Kim, P. Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature 2018, 558, 425–429.

    Google Scholar 

  56. Zhang, J. S.; Sun, J.; Li, Y. B.; Shi, F. F.; Cui, Y. Electrochemical control of copper intercalation into nanoscale Bi2Se3. Nano Lett. 2017, 17, 1741–1747.

    Google Scholar 

  57. Kolobov, A. V.; Tominaga, J. Two-Dimensional Transition-Metal Dichalcogenides; Springer: Cham, 2016.

    Google Scholar 

  58. Kertesz, M.; Hoffmann, R. Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides. J. Am. Chem. Soc. 1984, 106, 3453–3460.

    Google Scholar 

  59. Liang, L. B.; Puretzky, A. A.; Sumpter, B. G.; Meunier, V. Interlayer bond polarizability model for stacking-dependent low-frequency Raman scattering in layered materials. Nanoscale 2017, 9, 15340–15355.

    Google Scholar 

  60. Huang, Q.M.; Wang, L. F.; Xu, Z.; Wang, W. L.; Bai, X. D. In-situ TEM investigation of MoS2 upon alkali metal intercalation. Sci. China. Chem. 2018, 61, 222–227.

    Google Scholar 

  61. Fan, S. X.; Zou, X. L.; Du, H. D.; Gan, L.; Xu, C. J.; Lv, W.; He, Y. B.; Yang, Q. H.; Kang, F. Y.; Li, J. Theoretical investigation of the intercalation chemistry of lithium/sodium ions in transition metal dichalcogenides. J. Phys. Chem. C 2017, 121, 13599–13605.

    Google Scholar 

  62. Mortazavi, M.; Wang, C.; Deng, J. K.; Shenoy, V. B.; Medhekar, N. V. Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. J. Power Sources 2014, 268, 279–286.

    Google Scholar 

  63. Bissessur, R.; Kanatzidis, M. G.; Schindler, J. L.; Kannewurf, C. R. Encapsulation of polymers into MoS2 and metal to insulator transition in metastable MoS2. J. Chem. Soc. Chem. Commun. 1993, 1582–1585.

    Google Scholar 

  64. Py, M. A.; Haering, R. R. Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can. J. Phys. 1983, 61, 76–84.

    Google Scholar 

  65. Yang, D.; Frindt, R. F. Li-intercalation and exfoliation of WS2. J. Phys. Chem. Solids 1996, 57, 1113–1116.

    Google Scholar 

  66. Gordon, R. A.; Yang, D.; Crozier, E. D.; Jiang, D. T.; Frindt, R. F. Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension. Phys. Rev. B 2002, 65, 125407.

    Google Scholar 

  67. Tsai, H. L.; Heising, J.; Schindler, J. L.; Kannewurf, C. R.; Kanatzidis, M. G. Exfoliated−restacked phase of WS2. Chem. Mater. 1997, 9, 879–882.

    Google Scholar 

  68. Ganal, P.; Olberding, W.; Butz, T.; Ouvrard, G. Soft chemistry induced host metal coordination change from octahedral to trigonal prismatic in 1T-TaS2. Solid State Ion. 1993, 59, 313–319.

    Google Scholar 

  69. Wypych, F.; Schöllhorn, R. 1T-MoS2, a new metallic modification of molybdenum disulfide. J. Chem. Soc. Chem. Commun. 1992, 1386–1388.

    Google Scholar 

  70. Prouzet, E.; Heising, J.; Kanatzidis, M. G. Structure of restacked and pillared WS2: An X-ray absorption study. Chem. Mater. 2003, 15, 412–418.

    Google Scholar 

  71. Yang, D.; Jiménez Sandoval, S.; Divigalpitiya, W. M. R.; Irwin, J. C.; Frindt, R. F. Structure of single-molecular-layer MoS2. Phys. Rev. B 1991, 43, 12053–12056.

    Google Scholar 

  72. Qin, X. R.; Yang, D.; Frindt, R. F.; Irwin, J. C. Real-space imaging of single-layer MoS2 by scanning tunneling microscopy. Phys. Rev. B 1991, 44, 3490–3493.

    Google Scholar 

  73. Hu, T.; Li, R.; Dong, J. M. A new (2 × 1) dimerized structure of monolayer 1T-molybdenum disulfide, studied from first principles calculations. J. Chem. Phys. 2013, 139, 174702.

    Google Scholar 

  74. Yu, Y. F.; Nam, G. H.; He, Q. Y.; Wu, X. J.; Zhang, K.; Yang, Z. Z.; Chen, J. Z.; Ma, Q. L.; Zhao, M. T.; Liu, Z. Q. et al. High phase-purity 1T′-MoS2-and 1T′-MoSe2-layered crystals. Nat. Chem. 2018, 10, 638–643.

    Google Scholar 

  75. Heising, J.; Kanatzidis, M. G. Structure of restacked MoS2 and WS2 elucidated by electron crystallography. J. Am. Chem. Soc. 1999, 121, 638–643.

    Google Scholar 

  76. Benavente, E.; Santa Ana, M. A.; Mendizábal, F.; González, G. Intercalation chemistry of molybdenum disulfide. Coord. Chem. Rev. 2002, 224, 87–109.

    Google Scholar 

  77. Wypych, F.; Weber, T.; Prins, R. Scanning tunneling microscopic investigation of 1T-MoS2. Chem. Mater. 1998, 10, 723–727.

    Google Scholar 

  78. Heising, J.; Kanatzidis, M. G. Exfoliated and restacked MoS2 and WS2: Ionic or neutral species? Encapsulation and ordering of hard electropositive cations. J. Am. Chem. Soc. 1999, 121, 11720–11732.

    Google Scholar 

  79. Qin, X. R.; Yang, D.; Frindt, R. F.; Irwin, J. C. Scanning tunneling microscopy of single-layer MoS2 in water and butanol. Ultramicroscopy 1992, 42–44, 630–636.

    Google Scholar 

  80. Dungey, K. E.; Curtis, M. D.; Penner-Hahn, J. E. Structural characterization and thermal stability of MoS2 intercalation compounds. Chem. Mater. 1998, 10, 2152–2161.

    Google Scholar 

  81. Wypych, F.; Solenthaler, C.; Prins, R.; Weber, T. Electron diffraction study of intercalation compounds derived from 1T-MoS2. J. Solid State Chem. 1999, 144, 430–436.

    Google Scholar 

  82. Wypych, F.; Weber, T.; Prins, R. Scanning tunneling microscopic investigation of Kx(H2O)yMoS2. Surf. Sci. 1997, 380, L474–L478.

    Google Scholar 

  83. Shannon, R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, 32, 751–767.

    Google Scholar 

  84. Basu, S.; Worrell, W. L. Fast ion transport in solids; North-Holland: Amsterdam, 1979.

    Google Scholar 

  85. Kim, N.; Kim, K. S.; Jung, N.; Brus, L.; Kim, P. Synthesis and electrical characterization of magnetic bilayer graphene intercalate. Nano Lett. 2011, 11, 860–865.

    Google Scholar 

  86. Gallagher, P.; Lee, M.; Petach, T. A.; Stanwyck, S. W.; Williams, J. R.; Watanabe, K.; Taniguchi, T.; Goldhaber-Gordon, D. A high-mobility electronic system at an electrolyte-gated oxide surface. Nat. Commun. 2015, 6, 6437.

    Google Scholar 

  87. Browning, A.; Kumada, N.; Sekine, Y.; Irie, H.; Muraki, K.; Yamamoto, H. Evaluation of disorder introduced by electrolyte gating through transport measurements in graphene. Appl. Phys. Express 2016, 9, 065102.

    Google Scholar 

  88. Ovchinnikov, D.; Gargiulo, F.; Allain, A.; Pasquier, D. J.; Dumcenco, D.; Ho, C. H.; Yazyev, O. V.; Kis, A. Disorder engineering and conductivity dome in ReS2 with electrolyte gating. Nat. Commun. 2016, 7, 12391.

    Google Scholar 

  89. Couto, N. J. G.; Costanzo, D.; Engels, S.; Ki, D. K.; Watanabe, K.; Taniguchi, T.; Stampfer, C.; Guinea, F.; Morpurgo, A. F. Random strain fluctuations as dominant disorder source for high-quality on-substrate graphene devices. Phys. Rev. X 2014, 4, 041019.

    Google Scholar 

  90. Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L. M.; Muller, D. A. et al. One-dimensional electrical contact to a two-dimensional material. Science 2013, 342, 614–617.

    Google Scholar 

  91. Enyashin, A. N.; Seifert, G. Density-functional study of LixMoS2 intercalates (0 ≤ x ≤ 1). Comput. Theor. Chem. 2012, 999, 13–20.

    Google Scholar 

  92. Somoano, R. B.; Hadek, V.; Rembaum, A. Alkali metal intercalates of molybdenum disulfide. J. Chem. Phys. 1973, 58, 697–701.

    Google Scholar 

  93. Gregory, T. D.; Hoffman, R. J.; Winterton, R. C. Nonaqueous electrochemistry of magnesium: Applications to energy storage. J. Electrochem. Soc. 1990, 137, 775–780.

    Google Scholar 

  94. Bruce, P. G.; Krok, F.; Nowinski, J.; Gibson, V. C.; Tavakkoli, K. Chemical intercalation of magnesium into solid hosts. J. Mater. Chem. 1991, 1, 705–706.

    Google Scholar 

  95. Koski, K. J.; Wessells, C. D.; Reed, B. W.; Cha, J. J.; Kong, D. S.; Cui, Y. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J. Am. Chem. Soc. 2012, 134, 13773–13779.

    Google Scholar 

  96. Xi, X. X.; Zhao, L.; Wang, Z. F.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 2015, 10, 765–769.

    Google Scholar 

  97. Klemm, R. A. Pristine and intercalated transition metal dichalcogenide superconductors. Phys. C: Supercond. Appl. 2015, 514, 86–94.

    Google Scholar 

  98. Hossain, M.; Zhao, Z. Y.; Wen, W.; Wang, X. S.; Wu, J. X.; Xie, L. M. Recent advances in two-dimensional materials with charge density waves: Synthesis, characterization and applications. Crystals 2017, 7, 298.

    Google Scholar 

  99. Banerjee, A.; Garg, A.; Ghosal, A. Emergent superconductivity upon disordering a charge density wave ground state. Phys. Rev. B 2018, 98, 104206.

    Google Scholar 

  100. Lian, C. S.; Si, C.; Wu, J.; Duan, W. First-principles study of Na-intercalated bilayer NbSe2: Suppressed charge-density wave and strain-enhanced superconductivity. Phys. Rev. B 2017, 96, 235426.

    Google Scholar 

  101. Wang, X. F.; Shen, X.; Wang, Z. X.; Yu, R. C.; Chen, L. Q. Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation. ACS Nano 2014, 8, 11394–11400.

    Google Scholar 

  102. Hui, J. S.; Burgess, M.; Zhang, J. R.; Rodríguez-López, J. Layer number dependence of Li+ intercalation on few-layer graphene and electrochemical imaging of its solid–electrolyte interphase evolution. ACS Nano 2016, 10, 4248–4257.

    Google Scholar 

  103. Song, M. K.; Hong, S. D.; No, K. T. The structure of lithium intercalated graphite using an effective atomic charge of lithium. J. Electrochem. Soc. 2001, 148, A1159–A1163.

    Google Scholar 

Download references

Acknowledgements

S. Y. is supported by the National Science Foundation Division of Chemical, Bioengineering, Environmental, and Transport Systems (No. 1749742). M. Y. is supported by the Department of Energy (DE-SC0014476). J. J. C. acknowledges support from the Army Research Office (No. 71816-MS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judy J. Cha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdani, S., Yarali, M. & Cha, J.J. Recent progress on in situ characterizations of electrochemically intercalated transition metal dichalcogenides. Nano Res. 12, 2126–2139 (2019). https://doi.org/10.1007/s12274-019-2408-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2408-6

Keywords

Navigation