Skip to main content
Log in

“Chameleon-like” optical behavior of lanthanide-doped fluoride nanoplates for multilevel anti-counterfeiting applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lanthanide-based luminescent anti-counterfeiting materials are widely used in various kinds of products. However, the emission color of traditional lanthanide-based luminescent materials usually remains nearly unaltered upon different excitation lights, which may only work for single-level anti-counterfeiting. Herein, the NaYbF4:2%Er@NaYF4 core/shell nanoplates (NPs) with “chameleon-like” optical behavior are developed. These NPs display single-band red or green downshifting (DS) emission upon excitation at 377 or 490 nm, respectively. Upon 980 nm excitation, the color of upconversion (UC) emission can be finely tuned from green to yellow, and to red with increasing the excitation power density from 0.1 to 4.0 W/cm2. The proposed materials readily integrate the advantages of excitation wavelength-dependent DS single-band emissions and sensitive excitation power-dependent UC multicolor emissions in one and the same material, which has never been reported before. Particularly, the proposed NPs exhibit excellent performance as security labels on trademark tag and security ink on painting, thus revealing the great potential of these lanthanide-doped fluoride NPs in multilevel anti-counterfeiting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar, P.; Singh, S.; Gupta, B. K. Future prospects of luminescent nanomaterial based security inks: From synthesis to anti-counterfeiting applications. Nanoscale 2016, 8, 14297–14340.

    Article  Google Scholar 

  2. Liu, Y. L.; Ai, K. L.; Lu, L. H. Designing lanthanide-doped nanocrystals with both up- and down-conversion luminescence for anti-counterfeiting. Nanoscale 2011, 3, 4804–4810.

    Article  Google Scholar 

  3. Kaczmarek, A. M.; Liu, Y. Y.; Wang, C. H.; Laforce, B.; Vincze, L.; Van Der Voort, P.; Van Hecke, K.; Van Deun, R. Lanthanide “chameleon” multistage anti-counterfeit materials. Adv. Funct. Mater. 2017, 27, 1700258.

    Article  Google Scholar 

  4. Zhang, Y. H.; Zhang, L. X.; Deng, R. R.; Tian, J.; Zong, Y.; Jin, D. Y.; Liu, X. G. Multicolor barcoding in a single upconversion crystal. J. Am. Chem. Soc. 2014, 136, 4893–4896.

    Article  Google Scholar 

  5. Wang, F.; Liu, X. G. Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. Acc. Chem. Res. 2014, 47, 1378–1385.

    Article  Google Scholar 

  6. Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725–10815.

    Article  Google Scholar 

  7. Zheng, W.; Huang, P.; Tu, D. T.; Ma, E.; Zhu, H. M.; Chen, X. Y. Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 2015, 44, 1379–1415.

    Article  Google Scholar 

  8. Wang, Y.; Zheng, K. Z.; Song, S. Y.; Fan, D. Y.; Zhang, H. J.; Liu, X. G. Remote manipulation of upconversion luminescence. Chem. Soc. Rev. 2018, 47, 6473–6485.

    Article  Google Scholar 

  9. Zhao, J. B.; Jin, D. Y.; Schartner, E. P.; Lu, Y. Q.; Liu, Y. J.; Zvyagin, A. V.; Zhang, L. X.; Dawes, J. M.; Xi, P.; Piper, J. A. et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 2013, 8, 729–734.

    Article  Google Scholar 

  10. Liu, Y. S.; Tu, D. T.; Zhu, H. M.; Li, R. F.; Luo, W. Q.; Chen, X. Y. A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv. Mater. 2010, 22, 3266–3271.

    Article  Google Scholar 

  11. Tu, D. T.; Zheng, W.; Huang, P.; Chen, X. Y. Europium-activated luminescent nanoprobes: From fundamentals to bioapplications. Coordin. Chem. Rev. 2019, 378, 104–120.

    Article  Google Scholar 

  12. Bünzli, J. C. G. Benefiting from the unique properties of lanthanide ions. Acc. Chem. Res. 2006, 39, 53–61.

    Article  Google Scholar 

  13. Peng, D. F.; Ju, Q.; Chen, X.; Ma, R. H.; Chen, B.; Bai, G. X.; Hao, J. H.; Qiao, X. S.; Fan, X. P.; Wang, F. Lanthanide-doped energy cascade nanoparticles: Full spectrum emission by single wavelength excitation. Chem. Mater. 2015, 27, 3115–3120.

    Article  Google Scholar 

  14. Tan, M. L.; Del Rosal, B.; Zhang, Y. Q.; Martín Rodríguez, E.; Hu, J.; Zhou, Z. G.; Fan, R. W.; Ortgies, D. H.; Fernández, N.; Chaves-Coira, I. et al. Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated in vivo optical imaging in the second biological window. Nanoscale 2018, 10, 17771–17780.

    Article  Google Scholar 

  15. Kraft, M.; Würth, C.; Muhr, V.; Hirsch, T.; Resch-Genger, U. Particle-size-dependent upconversion luminescence of NaYF4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities. Nano Res. 2018, 11, 6360–6374.

    Article  Google Scholar 

  16. Li, L.Y.; Zhao, N. J.; Fu, L. M.; Zhou, J.; Ai, X. C.; Zhang, J. P. Temperature modulation of concentration quenching in lanthanide-doped nanoparticles for enhanced upconversion luminescence. Nano Res. 2018, 11, 2104–2115.

    Article  Google Scholar 

  17. Li, Y. F.; Zhang, Y. M.; Wang, W. P. Phototriggered targeting of nanocarriers for drug delivery. Nano Res. 2018, 11, 5424–5438.

    Article  Google Scholar 

  18. Liu, Y.; Tu, D. T.; Zheng, W.; Lu, L. Y.; You, W. W.; Zhou, S. Y.; Huang, P.; Li, R. F.; Chen, X. Y. A strategy for accurate detection of glucose in human serum and whole blood based on an upconversion nanoparticles-polydopamine nanosystem. Nano Res. 2018, 11, 3164–3174.

    Article  Google Scholar 

  19. Wang, Y. Q.; Wang, J.; Ma, Q. Q.; Li, Z. H.; Yuan, Q. Recent progress in background-free latent fingerprint imaging. Nano Res. 2018, 11, 5499–5518.

    Article  Google Scholar 

  20. Jung, T.; Jo, H. L.; Nam, S. H.; Yoo, B.; Cho, Y.; Kim, J.; Kim, H. M.; Hyeon, T.; Suh, Y. D.; Lee, H. et al. The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4:Yb3+,E3+. Phys. Chem. Chem. Phys. 2015, 17, 13201–13205.

    Article  Google Scholar 

  21. Tang, Z. J.; Liu, Q.; Li, J.; Wu, X. F.; Zhan, S. P.; Nie, G. Z.; Hu, J. S.; Hu, S. G.; Xi, Z. F.; Wu, S. B. et al. Tuning the photothermal effect of NaYF4:Yb3+, Er3+ upconversion luminescent crystals through La3+ ion doping. J. Lumin. 2019, 206, 21–26.

    Article  Google Scholar 

  22. Xu, J. T.; Yang, P. P.; Sun, M. D.; Bi, H. T.; Liu, B.; Yang, D.; Gai, S. L.; He, F.; Lin, J. Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging. ACS Nano 2017, 11, 4133–4144.

    Article  Google Scholar 

  23. You, W. W.; Tu, D. T.; Zheng, W.; Huang, P.; Chen, X. Y. Lanthanide-doped disordered crystals: Site symmetry and optical properties. J. Lumin. 2018, 201, 255–264.

    Article  Google Scholar 

  24. Yang, D. M.; Ma, P. A.; Hou, Z. Y.; Cheng, Z. Y.; Li, C. X.; Lin, J. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev. 2015, 44, 1416–1448.

    Article  Google Scholar 

  25. Gai, S. L.; Li, C. X.; Yang, P. P.; Lin, J. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 2014, 114, 2343–2389.

    Article  Google Scholar 

  26. Dai, Y. L.; Xiao, H. H.; Liu, J. H.; Yuan, Q. H.; Ma, P. A.; Yang, D. M.; Li, C. X.; Cheng, Z. Y.; Hou, Z. Y.; Yang, P. P. et al. In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles. J. Am. Chem. Soc. 2013, 135, 18920–18929.

    Article  Google Scholar 

  27. Zhang, C.; Yang, L.; Zhao, J.; Liu, B. H.; Han, M. Y.; Zhang, Z. P. White-light emission from an integrated upconversion nanostructure: Toward multicolor displays modulated by laser power. Angew. Chem., Int. Ed. 2015, 54, 11531–11535.

    Article  Google Scholar 

  28. Chen, B.; Liu, Y.; Xiao, Y.; Chen, X.; Li, Y.; Li, M. Y.; Qiao, X. S.; Fan, X. P.; Wang, F. Amplifying excitation-power sensitivity of photon upconversion in a NaYbF4:Ho nanostructure for direct visualization of electromagnetic hotspots. J. Phys. Chem. Lett. 2016, 7, 4916–4921.

    Article  Google Scholar 

  29. Liu, J.; Rijckaert, H.; Zeng, M.; Haustraete, K.; Laforce, B.; Vincze, L.; Van Driessche, I.; Kaczmarek, A. M.; Van Deun, R. Simultaneously excited downshifting/upconversion luminescence from lanthanide-doped core/shell fluoride nanoparticles for multimode anticounterfeiting. Adv. Funct. Mater. 2018, 28, 1707365.

    Article  Google Scholar 

  30. Scha..fer, H.; Ptacek, P.; Voss, B.; Eickmeier, H.; Nordmann, J; Haase, M. Synthesis and characterization of upconversion fluorescent Yb3+, Er3+ doped RbY2F7 nano- and microcrystals. Cryst. Growth Des. 2010, 10, 2202–2208.

    Article  Google Scholar 

  31. Ju, Q.; Tu, D. T.; Liu, Y. S.; Li, R. F.; Zhu, H. M.; Chen, J. C.; Chen, Z.; Huang, M. D.; Chen, X. Y. Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes. J. Am. Chem. Soc. 2012, 134, 1323–1330.

    Article  Google Scholar 

  32. You, W. W.; Tu, D. T.; Zheng, W.; Shang, X. Y.; Song, X. R.; Zhou, S. Y.; Liu, Y.; Li, R. F.; Chen, X. Y. Large-scale synthesis of uniform lanthanide-doped NaREF4 upconversion/downshifting nanoprobes for bioapplications. Nanoscale 2018, 10, 11477–11484.

    Article  Google Scholar 

  33. Ma, C. G.; Brik, M. G.; Liu, D. X.; Feng, B.; Tian, Y.; Suchocki, A. Energy level schemes of fN electronic configurations for the di-, tri-, and tetravalent lanthanides and actinides in a free state. J. Lumin. 2016, 170, 369–374.

    Article  Google Scholar 

  34. Wang, J.; Deng, R. R.; MacDonald, M. A.; Chen, B. L.; Yuan, J. K.; Wang, F.; Chi, D. Z.; Hor, T. S. A.; Zhang, P.; Liu, G. K. et al. Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat. Mater. 2014, 13, 157–162.

    Article  Google Scholar 

  35. Wang, L. L.; Xue, X. J.; Chen, H.; Zhao, D.; Qin, W. P.. Unusual radiative transitions of Eu3+ ions in Yb/Er/Eu tri-doped NaYF4 nanocrystals under infrared excitation. Chem. Phys. Lett. 2010, 485, 183–186.

    Article  Google Scholar 

  36. Chen, X. Y.; Ma, E.; Liu, G. K. Energy levels and optical spectroscopy of Er3+ in Gd2O3 nanocrystals. J. Phys. Chem. C 2007, 111, 10404–10411.

    Article  Google Scholar 

  37. Aarts, L.; van der Ende, B. M.; Meijerink, A. Downconversion for solar cells in NaYF4:Er,Yb. J. Appl. Phys. 2009, 106, 023522.

    Article  Google Scholar 

  38. Pollnau, M.; Gamelin, D. R.; Lüthi, S. R.; Güdel, H. U.; Hehlen, M. P. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 2000, 61, 3337–3346.

    Article  Google Scholar 

  39. Fan, S. H.; Wang, S. K.; Yu, L.; Sun, H. T.; Gao, G. J.; Hu, L. L. Ion-redistribution induced efficient upconversion in β-NaYF4:20%Yb3+,2%Er3+ microcrystals with well controlled morphology and size. Opt. Express 2017, 25, 180–190.

    Article  Google Scholar 

  40. Wang, T.; Yu, H.; Siu, C. K.; Qiu, J. B.; Xu, X. H.; Yu, S. F. White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods. ACS Photonics 2017, 4, 1539–1543.

    Article  Google Scholar 

  41. Berry, M. T.; May, P. S. Disputed mechanism for NIR-to-red upconversion luminescence in NaYF4:Yb3+,Er3+. J. Phys. Chem. A 2015, 119, 9805–9811.

    Article  Google Scholar 

  42. Shao, W.; Lim, C. K.; Li, Q.; Swihart, M. T.; Prasad, P. N. Dramatic enhancement of quantum cutting in lanthanide-doped nanocrystals photosensitized with an aggregation-induced enhanced emission dye. Nano Lett. 2018, 18, 4922–4926.

    Article  Google Scholar 

  43. Thoma, R. E.; Brunton, G. D.; Penneman, R. A.; Keenan, T. K. Equilibrium relations and crystal structure of lithium fluorolanthanate phases. Inorg. Chem. 1970, 9, 1096–1101.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Foundation of China (NSFC) (Nos. 21771185, 51672272, 21650110462, and U1805252), the Strategic Priority Research Program of the CAS (No. XDB20000000), the CAS/SAFEA International Partnership Program for Creative Research Teams, and Natural Science Foundation of Fujian Province (No. 2017I0018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Datao Tu or Xueyuan Chen.

Electronic supplementary material

12274_2019_2366_MOESM1_ESM.pdf

“Chameleon-like” optical behavior of lanthanide-doped fluoride nanoplates for multilevel anti-counterfeiting applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, W., Tu, D., Li, R. et al. “Chameleon-like” optical behavior of lanthanide-doped fluoride nanoplates for multilevel anti-counterfeiting applications. Nano Res. 12, 1417–1422 (2019). https://doi.org/10.1007/s12274-019-2366-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2366-z

Keywords

Navigation