Skip to main content
Log in

Black phosphorus inverter devices enabled by in-situ aluminum surface modification

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional black phosphorus (BP) generally exhibits a hole-dominated transport characteristic when configured as field-effect transistor devices. The effective control of charge carrier type and concentration is very crucial for the application of BP in complementary electronics. Herein, we report a facile and effective electron doping methodology on BP, through in situ surface modification with aluminum (Al). The electron mobility of few-layer BP is found to be largely enhanced to ∼ 10.6 cm2·V–1·s–1 by over 6 times after aluminum modification. In situ photoelectron spectroscopy characterization reveals the formation of Al–P covalent bond at the interface, which can also serve as local gate to tune the transport properties in BP layers. Finally, a spatially-controlled aluminum doping technique is employed to establish a p–n homojunction on a single BP flake, and hence to realize the complementary inverter devices, where the highest gain value of ∼ 33 is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D. A.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  2. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

    Article  Google Scholar 

  3. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  Google Scholar 

  4. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on twodimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

    Article  Google Scholar 

  5. Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

    Article  Google Scholar 

  6. Liu, H.; Neal, A. T.; Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563–8569.

    Article  Google Scholar 

  7. Yao, B. C.; Huang, S.-W.; Liu, Y.; Vinod, A., K.; Choi, C.; Hoff, M.; Li, Y. N.; Yu, M. B.; Feng, Z. Y.; Kwong, D. L. et al. Gate-tunable frequency combs in graphene–nitride microresonators. Nature 2018, 558, 410–414.

    Article  Google Scholar 

  8. Xiang, D.; Liu, T.; Xu, J. L.; Tan, J. Y.; Hu, Z. H.; Lei, B.; Zheng, Y.; Wu, J.; Neto, A. H. C.; Liu, L. et al. Two-dimensional multibit optoelectronic memory with broadband spectrum distinction. Nat. Commun. 2018, 9, 2966.

    Article  Google Scholar 

  9. Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.

    Article  Google Scholar 

  10. Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.

    Article  Google Scholar 

  11. Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

    Article  Google Scholar 

  12. Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.

    Article  Google Scholar 

  13. Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

    Article  Google Scholar 

  14. Ovchinnikov, D.; Allain, A.; Huang, Y. S.; Dumcenco, D.; Kis, A. Electrical transport properties of single-layer WS2. ACS Nano 2014, 8, 8174–8181.

    Article  Google Scholar 

  15. Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. M.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 2018, 557, 696–700.

    Article  Google Scholar 

  16. Allain, A.; Kis, A. Electron and hole mobilities in single-layer WSe2. ACS Nano 2014, 8, 7180–7185.

    Article  Google Scholar 

  17. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    Article  Google Scholar 

  18. Ling, X.; Wang, H.; Huang, S. X.; Xia, F. N.; Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 2015, 112, 4523–4530.

    Article  Google Scholar 

  19. Liu, H.; Du, Y. C.; Deng, Y. X.; Ye, P. D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732–2743.

    Article  Google Scholar 

  20. Li, L. K.; Yang, F. Y.; Ye, G. J.; Zhang, Z. C.; Zhu, Z. W.; Lou, W. K.; Zhou, X. Y.; Li, L.; Watanabe, K.; Taniguchi, T. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 2016, 11, 593–597.

    Article  Google Scholar 

  21. Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.

    Article  Google Scholar 

  22. Li, L. K.; Kim, J.; Jin, C. H.; Ye, G. J.; Qiu, D. Y.; da Jornada, F. H.; Shi, Z. W.; Chen, L.; Zhang, Z. C.; Yang, F. Y. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 2017, 12, 21–25.

    Article  Google Scholar 

  23. Brown, A.; Rundqvist, S. Refinement of the crystal structure of black phosphorus. Acta Crystallogr. 1965, 19, 684–685.

    Article  Google Scholar 

  24. Hultgren, R.; Gingrich, N. S.; Warren, B. E. The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 1935, 3, 351–355.

    Article  Google Scholar 

  25. Zhang, C. D.; Lian, J. C.; Yi, W.; Jiang, Y. H.; Liu, L. W.; Hu, H.; Xiao, W. D.; Du, S. X.; Sun, L. L.; Gao, H. J. Surface structures of black phosphorus investigated with scanning tunneling microscopy. J. Phys. Chem. C 2009, 113, 18823–18826.

    Article  Google Scholar 

  26. Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 2015, 10, 707–713.

    Article  Google Scholar 

  27. Huang, M. Q.; Wang, M. L.; Chen, C.; Ma, Z. W.; Li, X. F.; Han, J. B.; Wu, Y. Q. Broadband black-phosphorus photodetectors with high responsivity. Adv. Mater. 2016, 28, 3481–3485.

    Article  Google Scholar 

  28. Han, C.; Hu, Z. H.; Carvalho, A.; Guo, N.; Zhang, J. L.; Hu, F.; Xiang, D.; Wu, J.; Lei, B.; Wang, L. et al. Oxygen induced strong mobility modulation in few-layer black phosphorus. 2D Mater. 2017, 4, 021007.

    Article  Google Scholar 

  29. Du, Y. C.; Liu, H.; Deng, Y. X.; Ye, P. D. Device perspective for black phosphorus field-effect transistors: Contact resistance, ambipolar behavior, and scaling. ACS Nano 2014, 8, 10035–10042.

    Article  Google Scholar 

  30. Perello, D. J.; Chae, S. H.; Song, S.; Lee, Y. H. High-performance n-type black phosphorus transistors with type control via thickness and contactmetal engineering. Nat. Commun. 2015, 6, 7809.

    Article  Google Scholar 

  31. Das, S.; Demarteau, M.; Roelofs, A. Ambipolar phosphorene field effect transistor. ACS Nano 2014, 8, 11730–11738.

    Article  Google Scholar 

  32. Zhang, J. L.; Han, C.; Hu, Z. H.; Wang, L.; Liu, L.; Wee, A. T. S.; Chen, W. 2D phosphorene: Epitaxial growth and interface engineering for electronic devices. Adv. Mater., in press, DOI: 10.1002/adma.201802207.

  33. Kim, J.; Baik, S. S.; Ryu, S. H.; Sohn, Y.; Park, S.; Park, B. G.; Denlinger, J.; Yi, Y.; Choi, H. J.; Kim, K. S. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 2015, 349, 723–726.

    Article  Google Scholar 

  34. Han, C.; Hu, Z. H.; Gomes, L. C.; Bao, Y.; Carvalho, A.; Tan, S. J. R.; Lei, B.; Xiang, D.; Wu, J.; Qi, D. Y. et al. Surface functionalization of black phosphorus via potassium toward high-performance complementary devices. Nano Lett. 2017, 17, 4122–4129.

    Article  Google Scholar 

  35. Xiang, D.; Han, C.; Wu, J.; Zhong, S.; Liu, Y. Y.; Lin, J. D.; Zhang, X.-A.; Hu, W. P.; Özyilmaz, B.; Neto, A. C. et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 2015, 6, 6485.

    Article  Google Scholar 

  36. Wu, J.; Koon, G. K. W.; Xiang, D.; Han, C.; Toh, C. T.; Kulkarni, E. S.; Verzhbitskiy, I.; Carvalho, A.; Rodin, A. S.; Koenig, S. P. et al. Colossal ultraviolet photoresponsivity of few-layer black phosphorus. ACS Nano 2015, 9, 8070–8077.

    Article  Google Scholar 

  37. Ryder, C. R.; Wood, J. D.; Wells, S. A.; Yang, Y.; Jariwala, D.; Marks, T. J.; Schatz, T. J.; Hersam, M. C. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 2016, 8, 597–602.

    Article  Google Scholar 

  38. Abellán, G.; Lloret, V.; Mundloch, U.; Marcia, M.; Neiss, C.; Görling, A.; Varela, M.; Hauke, F.; Hirsch, A. Noncovalent functionalization of black phosphorus. Angew. Chem. 2016, 128, 14777–14782.

    Article  Google Scholar 

  39. Liu, Y. D.; Cai, Y. Q.; Zhang, G.; Zhang, Y. W.; Ang, K. W. Al-doped black phosphorus p–n homojunction diode for high performance photovoltaic. Adv. Funct. Mater. 2017, 27, 1604638.

    Article  Google Scholar 

  40. Prakash, A.; Cai, Y. Q.; Zhang, G.; Zhang, Y. W.; Ang, K. W. Black phosphorus N-type field-effect transistor with ultrahigh electron mobility via aluminum adatoms doping. Small 2017, 13, 1602909.

    Article  Google Scholar 

  41. Liu, Y. D.; Ang, K. W. Monolithically integrated flexible black phosphorus complementary inverter circuits. ACS Nano 2017, 11, 7416–7423.

    Article  Google Scholar 

  42. Sugai, S.; Shirotani, I. Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun. 1985, 53, 753–755.

    Article  Google Scholar 

  43. Hu, Z. H.; Li, Q.; Lei, B.; Zhou, Q. H.; Xiang, D.; Lyu, Z.; Hu, F.; Wang, J. Y.; Ren, Y. J.; Guo, R. et al. Water-catalyzed oxidation of few-layer black phosphorous in a dark environment. Angew. Chem. 2017, 56, 9131–9135.

    Article  Google Scholar 

  44. Hu, T.; Hong, J. S. First-principles study of metal adatom adsorption on black phosphorene. J. Phys. Chem. C 2015, 119, 8199–8207.

    Article  Google Scholar 

  45. Zhu, H.; McDonnell, S.; Qin, X. Y.; Azcatl, A.; Cheng, L. X.; Addou, R.; Kim, J.; Ye, P. D.; Wallace, R. M. Al2O3 on black phosphorus by atomic layer deposition: An in situ interface study. ACS Appl. Mater. Inter 2015, 7, 13038–13043.

    Article  Google Scholar 

  46. Engel, M.; Steiner, M.; Avouris, P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 2014, 14, 6414–6417.

    Article  Google Scholar 

  47. Youngblood, N.; Chen, C.; Koester, S. J.; Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 2015, 9, 247–252.

    Article  Google Scholar 

  48. Guo, Q. S.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B. C.; Li, C.; Han, S.-J.; Wang, H. et al. Black phosphorus midinfrared photodetectors with high gain. Nano Lett. 2016, 16, 4648–4655.

    Article  Google Scholar 

  49. Hu, Z. H.; Li, Q.; Lei, B.; Wu, J.; Zhou, Q. H.; Gu, C. D.; Wen, X. L.; Wang, J. Y.; Liu, Y. P.; Li, S. S. et al. Abnormal near-infrared absorption in 2D black phosphorus induced by Ag nanoclusters surface functionalization. Adv. Mater. 2018, 30, 1801931.

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21573156 and 21872100), Natural Science Foundation of Jiangsu Province (No. BK20170005), Singapore MOE Grants R143-000-652-112 and R143-000-A43-114, and Fundamental Research Foundation of Shenzhen (No. JCYJ20170817100405375).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Hu, Z., Han, C. et al. Black phosphorus inverter devices enabled by in-situ aluminum surface modification. Nano Res. 12, 531–536 (2019). https://doi.org/10.1007/s12274-018-2246-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2246-y

Keywords

Navigation