Skip to main content
Log in

Delivery systems for theranostics in neurodegenerative diseases

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases are characterized by progressive nervous system dysfunction, which affects over 90,000 people every year. Although numerous contrast agents and therapeutic drugs are available for the diagnosis and therapy of neurodegenerative diseases, there are several limitations to their application. Particularly, these contrast agents and drugs are restricted from entering into the brain because of the blood-brain barrier, which represents a major bottleneck to efficacious and safe theranostics of neurodegenerative diseases. Nanoparticles can offer impressive improvement in the theranostics of neurodegenerative diseases, as they can effectively deliver contrast agents and drugs to target sites in the central nervous system. In this review, we describe various delivery systems, including lipid nanoparticles, polymeric nanoparticles, inorganic nanoparticles, and exosomes useful for the theranostics of neurodegenerative diseases. Finally, we outline current challenges and our perspectives on the development of delivery systems for theranostics of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo, J. L.; Lee, V. M. Y. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat. Med. 2014, 20, 130–138.

    Google Scholar 

  2. Brettschneider, J.; Del Tredici, K.; Lee, V. M. Y.; Trojanowski, J. Q. Spreading of pathology in neurodegenerative diseases: A focus on human studies. Nat. Rev. Neurosci. 2015, 16, 109–120.

    Google Scholar 

  3. Pehlivan, S. B. Nanotechnology-based drug delivery systems for targeting, imaging and diagnosis of neurodegenerative diseases. Pharm. Res. 2013, 30, 2499–2511.

    Google Scholar 

  4. Ross, C. A.; Poirier, M. A. Protein aggregation and neurodegenerative disease. Nat. Med. 2004, 10 Suppl, S10–S17.

    Google Scholar 

  5. Forman, M. S.; Trojanowski, J. Q.; Lee, V. M.-Y. Neurodegenerative diseases: A decade of discoveries paves the way for therapeutic breakthroughs. Nat. Med. 2004, 10, 1055–1063.

    Google Scholar 

  6. Barnham, K. J.; Masters, C. L.; Bush, A. I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 2004, 3, 205–214.

    Google Scholar 

  7. Zecca, L.; Youdim, M. B. H.; Riederer, P.; Connor, J. R.; Crichton, R. R. Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci. 2004, 5, 863–873.

    Google Scholar 

  8. Andersen, J. K. Oxidative stress in neurodegeneration: Cause or consequence? Nat. Med. 2004, 10 Suppl, S18–S25.

    Google Scholar 

  9. Soto, C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 2003, 4, 49–60.

    Google Scholar 

  10. Wang, P.; Moore, A. Molecular imaging of stem cell transplantation for neurodegenerative diseases. Curr. Pharm. Design 2012, 18, 4426–4440.

    Google Scholar 

  11. Brundin, P.; Melki, R.; Kopito, R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat. Rev. Mol. Cell Biol. 2010, 11, 301–307.

    Google Scholar 

  12. Goedert, M. Alzheimer's and Parkinson’s diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 2015, 349, 1255555.

    Google Scholar 

  13. Hardy, J.; Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002, 297, 353–356.

    Google Scholar 

  14. Pimplikar, S. W.; Nixon, R. A.; Robakis, N. K.; Shen, J.; Tsai, L. H. Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. J. Neurosci. 2010, 30, 14946–14954.

    Google Scholar 

  15. Liao, Y. H.; Chang, Y. J.; Yoshiike, Y.; Chang, Y. C.; Chen, Y. R. Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small 2012, 8, 3661–3639.

    Google Scholar 

  16. Chakravarthy, M.; Chen, S. X.; Dodd, P. R.; Veedu, R. N. Nucleic acid-based theranostics for tackling Alzheimer’s disease. Theranostics 2017, 7, 3933–3947.

    Google Scholar 

  17. Busquets, M. A.; Sabatė, R.; Estelrich, J. Potential applications of magnetic particles to detect and treat Alzheimer’s disease. Nanoscale Res. Lett. 2014, 9, 538–548.

    Google Scholar 

  18. Frost, B.; Diamond, M. I. Prion-like mechanisms in neurodegenerative diseases. Nat. Rev. Neurosci. 2010, 11, 155–159.

    Google Scholar 

  19. Roney, C.; Kulkarni, P.; Arora, V.; Antich, P.; Bonte, F.; Wu, A. M.; Mallikarjunan, N. N.; Manohar, S.; Liang, H. F.; Kulkarni, A. R. et al. Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer's disease. J. Control. Release 2005, 108, 193–214.

    Google Scholar 

  20. Migliore, L.; Uboldi, C.; Di Bucchianico, S.; Coppedè, F. Nanomaterials and neurodegeneration. Environ. Mol. Mutagen. 2015, 56, 149–170.

    Google Scholar 

  21. Liu, G.; Men, P.; Harris, P. L. R.; Rolston, R. K.; Perry, G.; Smith, M. A. Nanoparticle iron chelators: A new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neurosci. Lett. 2006, 406, 189–193.

    Google Scholar 

  22. Du, H.; Guo, L.; Yan, S. Q.; Sosunov, A. A.; McKhann, G. M.; Yan, S. S. Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc. Natl. Acad. Sci. USA 2010, 107, 18670–18675.

    Google Scholar 

  23. Komane, P. P.; Choonara, Y. E.; du Toit, L. C.; Kumar, P.; Kondiah, P. P. D.; Modi, G.; Pillay, V. Diagnosis and treatment of neurological and ischemic disorders employing carbon nanotube technology. J. Nanomater. 2016, 2016, 9417874.

    Google Scholar 

  24. Masters, C. L.; Bateman, R.; Blennow, K.; Rowe, C. C.; Sperling, R. A.; Cummings, J. L. Alzheimer's disease. Nat. Rev. Dis. Primers 2015, 1, 15056.

    Google Scholar 

  25. Guo, Q.; You, H. H.; Yang, X.; Lin, B. C.; Zhu, Z. H.; Lu, Z. S.; Li, X. X.; Zhao, Y.; Mao, L.; Shen, S. P. et al. Functional single-walled carbon nanotubes ‘CAR’ for targeting dopamine delivery into the brain of parkinsonian mice. Nanoscale 2017, 9, 10832–10845.

    Google Scholar 

  26. Dexter, D. T.; Jenner, P. Parkinson disease: From pathology to molecular disease mechanisms. Free Radic. Biol. Med. 2013, 62, 132–144.

    Google Scholar 

  27. Filomeni, G.; De Zio, D.; Cecconi, F. Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ. 2015, 22, 377–388.

    Google Scholar 

  28. Michel, P. P.; Hirsch, E. C.; Hunot, S. Understanding dopaminergic cell death pathways in Parkinson disease. Neuron 2016, 90, 675–691.

    Google Scholar 

  29. Dauer, W.; Przedborski, S. Parkinson's disease: Mechanisms and models. Neuron 2003, 39, 889–909.

    Google Scholar 

  30. Obeso, J. A.; Rodriguez-Oroz, M. C.; Goetz, C. G.; Marin, C.; Kordower, J. H.; Rodriguez, M.; Hirsch, E. C.; Farrer, M.; Schapira, A. H.; Halliday, G. Missing pieces in the Parkinson’s disease puzzle. Nat. Med. 2010, 16, 653–661.

    Google Scholar 

  31. Tisch, U.; Schlesinger, I.; Ionescu, R.; Nassar, M.; Axelrod, N.; Robertman, D.; Tessler, Y.; Azar, F.; Marmur, A.; Aharon-Peretz, J. et al. Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterialbased sensors. Nanomedicine 2013, 8, 43–56.

    Google Scholar 

  32. Chaudhuri, K. R.; Healy, D. G.; Schapira, A. H. V. Non-motor symptoms of Parkinson's disease: Diagnosis and management. Lancet Neurol 2006, 5, 235–245.

    Google Scholar 

  33. Savitt, J. M.; Dawson, V. L.; Dawson, T. M. Diagnosis and treatment of Parkinson disease: Molecules to medicine. J. Clin. Invest. 2006, 116, 1744–1754.

    Google Scholar 

  34. Liu, D. B.; Chen, W. W.; Tian, Y.; He, S.; Zheng, W. F.; Sun, J. S.; Wang, Z.; Jiang, X. Y. A highly sensitive goldnanoparticle-based assay for acetylcholinesterase in cerebrospinal fluid of transgenic mice with Alzheimer’s disease. Adv. Healthc. Mater. 2012, 1, 90–95.

    Google Scholar 

  35. Hughes, A. J.; Daniel, S. E.; Kilford, L.; Lees, A. J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. J. Neurol Neurosurg Psychiatry 1992, 55, 181–184.

    Google Scholar 

  36. Hughes, A. J.; Daniel, S. E.; Lees, A. J. Improved accuracy of clinical diagnosis of Lewy body Parkinson’s disease. Neurology 2001, 57, 1497–1499.

    Google Scholar 

  37. Mueller, S. G.; Weiner, M. W.; Thal, L. J.; Petersen, R. C.; Jack, C. R.; Jagust, W.; Trojanowski, J. Q.; Toga, A. W.; Beckett, L. Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer's disease neuroimaging initiative (ADNI). Alzheimer's Dementia 2005, 1, 55–66.

    Google Scholar 

  38. Viola, K. L.; Sbarboro, J.; Sureka, R.; De, M.; Bicca, M. A.; Wang, J.; Vasavada, S.; Satpathy, S.; Wu, S.; Joshi, H. et al. Towards non-invasive diagnostic imaging of early-stage Alzheimer's disease. Nat. Nanotechnol. 2015, 10, 91–98.

    Google Scholar 

  39. Dao, P.; Ye, F. F.; Liu, Y.; Du, Z. Y.; Zhang, K.; Dong, C. Z.; Meunier, B.; Chen, H. X. Development of phenothiazinebased theranostic compounds that act both as inhibitors of β-amyloid aggregation and as imaging probes for amyloid plaques in Alzheimer’s disease. ACS Chem. Neurosci. 2017, 8, 798–806.

    Google Scholar 

  40. Small, G. W.; Kepe, V.; Ercoli, L. M.; Siddarth, P.; Bookheimer, S. Y.; Miller, K. J.; Lavretsky, H.; Burggren, A. C.; Cole, G. M.; Vinters, H. V. et al. PET of brain amyloid and tau in mild cognitive impairment. N. Engl. J. Med. 2006, 355, 2652–2663.

    Google Scholar 

  41. Perrin, R. J.; Fagan, A. M.; Holtzman, D. M. Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature 2009, 461, 916–922.

    Google Scholar 

  42. Nasrallah, I. M.; Wolk, D. A. Multimodality imaging of Alzheimer disease and other neurodegenerative dementias. J. Nucl. Med. 2014, 55, 2003–2011.

    Google Scholar 

  43. Zhu, L.; Ploessl, K.; Kung, H. F. PET/SPECT imaging agents for neurodegenerative diseases. Chem. Soc. Rev. 2014, 43, 6683–6691.

    Google Scholar 

  44. Wang, Y. X. J. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 2011, 1, 35–40.

    Google Scholar 

  45. Amiri, H.; Saeidi, K.; Borhani, P.; Manafirad, A.; Ghavami, M.; Zerbi, V. Alzheimer's disease: Pathophysiology and applications of magnetic nanoparticles as MRI theranostic agents. ACS Chem. Neurosci. 2013, 4, 1417–1429.

    Google Scholar 

  46. Wadas, T. J.; Wong, E. H.; Weisman, G. R.; Anderson, C. J. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem. Rev. 2010, 110, 2858–2902.

    Google Scholar 

  47. Seifert, K. D.; Wiener, J. I. The impact of DaTscan on the diagnosis and management of movement disorders: A retrospective study. Am. J. Neurodegener. Dis. 2013, 2, 29–34.

    Google Scholar 

  48. Cormode, D. P.; Skajaa, T.; Fayad, Z. A.; Mulder, W. J. M. Nanotechnology in medical imaging: Probe design and applications. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 992–1000.

    Google Scholar 

  49. Wang, H.; Zheng, L. F.; Peng, C.; Guo, R.; Shen, M. W.; Shi, X. Y.; Zhang, G. X. Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles. Biomaterials 2011, 32, 2979–2988.

    Google Scholar 

  50. Kim, D.; Park, S.; Lee, J. H.; Jeong, Y. Y.; Jon, S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc. 2007, 129, 7661–7665.

    Google Scholar 

  51. Kim, S. H.; Kim, E. M.; Lee, C. M.; Kim, D. W.; Lim, S. T.; Sohn, M. H.; Jeong, H. J. Synthesis of PEG-iodine-capped gold nanoparticles and their contrast enhancement in in vitro and in vivo for X-ray/CT. J. Nanomater. 2012, 2012, 46.

    Google Scholar 

  52. Lusic, H.; Grinstaff, M. W. X-ray-computed tomography contrast agents. Chem. Rev. 2013, 113, 1641–1666.

    Google Scholar 

  53. Betzer, O.; Shwartz, A.; Motiei, M.; Kazimirsky, G.; Gispan, I.; Damti, E.; Brodie, C.; Yadid, G.; Popovtzer, R. Nanoparticle-based CT imaging technique for longitudinal and quantitative stem cell tracking within the brain: Application in neuropsychiatric disorders. ACS Nano 2014, 8, 9274–9285.

    Google Scholar 

  54. Shokrollahi, H. Contrast agents for MRI. Mater Sci. Eng. C 2013, 33, 4485–4497.

    Google Scholar 

  55. Tong, S.; Hou, S. J.; Zheng, Z. L.; Zhou, J.; Bao, G. Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett. 2010, 10, 4607–4613.

    Google Scholar 

  56. Janib, S. M.; Moses, A. S.; MacKay, J. A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 2010, 62, 1052–1063.

    Google Scholar 

  57. Xie, J.; Lee, S.; Chen, X. Y. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 2010, 62, 1064–1079.

    Google Scholar 

  58. Wadghiri, Y. Z.; Sigurdsson, E. M.; Sadowski, M.; Elliott, J. I.; Li, Y. S.; Scholtzova, H.; Tang, C. Y.; Aguinaldo, G.; Pappolla, M.; Duff, K. et al. Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn. Reson. Med. 2003, 50, 293–302.

    Google Scholar 

  59. Weinstein, J. S.; Varallyay, C. G.; Dosa, E.; Gahramanov, S.; Hamilton, B.; Rooney, W. D.; Muldoon, L. L.; Neuwelt, E. A. Superparamagnetic iron oxide nanoparticles: Diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J. Cereb. Blood Flow Metab. 2010, 30, 15–35.

    Google Scholar 

  60. Zlokovic, B. V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 2011, 12, 723–738.

    Google Scholar 

  61. Youdim, M. B.; Buccafusco, J. J. Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol. Sci. 2005, 26, 27–35.

    Google Scholar 

  62. Lauzon, M. A.; Daviau, A.; Marcos, B.; Faucheux, N. Nanoparticle-mediated growth factor delivery systems: A new way to treat Alzheimer's disease. J. Control. Release 2015, 206, 187–205.

    Google Scholar 

  63. Tan, C. C.; Yu, J. T.; Wang, H. F.; Tan, M. S.; Meng, X. F.; Wang, C.; Jiang, T.; Zhu, X. C.; Tan, L. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer's disease: A systematic review and meta-analysis. J. Alzheimers Dis. 2014, 41, 615–631.

    Google Scholar 

  64. Sah, D. W. Y. Therapeutic potential of RNA interference for neurological disorders. Life Sci. 2006, 79, 1773–1780.

    Google Scholar 

  65. Kao, S. C.; Krichevsky, A. M.; Kosik, K. S.; Tsai, L. H. BACE1 suppression by RNA interference in primary cortical neurons. J. Biol. Chem. 2004, 279, 1942–1949.

    Google Scholar 

  66. Singer, O.; Marr, R. A.; Rockenstein, E.; Crews, L.; Coufal, N. G.; Gage, F. H.; Verma, I. M.; Masliah, E. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat. Neurosci. 2005, 8, 1343–1349.

    Google Scholar 

  67. Sahni, J. K.; Doggui, S.; Ali, J.; Baboota, S.; Dao, L.; Ramassamy, C. Neurotherapeutic applications of nanoparticles in Alzheimer’s disease. J. Control. Release 2011, 152, 208–231.

    Google Scholar 

  68. Tatarek-Nossol, M.; Yan, L. M.; Schmauder, A.; Tenidis, K.; Westermark, G.; Kapurniotu, A. Inhibition of hIAPP amyloid-fibril formation and apoptotic cell death by a designed hIAPP amyloid-core-containing hexapeptide. Chem. Biol. 2005, 12, 797–809.

    Google Scholar 

  69. Ma, Q. L.; Lim, G. P.; Harris-White, M. E.; Yang, F. S.; Ambegaokar, S. S.; Ubeda, O. J.; Glabe, C. G.; Teter, B.; Frautschy, S. A.; Cole, G. M. Antibodies against β-amyloid reduce Aβ oligomers, glycogen synthase kinase-3β activation and τ phosphorylation in vivo and in vitro. J. Neurosci. Res. 2006, 83, 374–384.

    Google Scholar 

  70. Liu, G.; Men, P.; Perry, G.; Smith, M. A. Metal chelators coupled with nanoparticles as potential therapeutic agents for Alzheimer’s disease. J. Nanoneurosci. 2009, 1, 42–55.

    Google Scholar 

  71. Liu, G.; Men, P.; Kudo, W.; Perry, G.; Smith, M. A. Nanoparticle-chelator conjugates as inhibitors of amyloid-β aggregation and neurotoxicity: A novel therapeutic approach for Alzheimer disease. Neurosci. Lett. 2009, 455, 187–190.

    Google Scholar 

  72. Mourtas, S.; Canovi, M.; Zona, C.; Aurilia, D.; Niarakis, A.; La Ferla, B.; Salmona, M.; Nicotra, F.; Gobbi, M.; Antimisiaris, S. G. Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1–42 peptide. Biomaterials 2011, 32, 1635–1645.

    Google Scholar 

  73. Weintraub, D.; Comella, C. L.; Horn, S. Parkinson’s disease-part 2: Treatment of motor symptoms. Am. J. Manag. Care 2008, 14, S49–S58.

    Google Scholar 

  74. Nuytemans, K.; Theuns, J.; Cruts, M.; Van Broeckhoven, C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: A mutation update. Hum. Mutat. 2010, 31, 763–780.

    Google Scholar 

  75. Lee, V. M. Y.; Trojanowski, J. Q. Mechanisms of Parkinson’s disease linked to pathological α-synuclein: New targets for drug discovery. Neuron 2006, 52, 33–38.

    Google Scholar 

  76. Helmschrodt, C.; Höbel, S.; Schöniger, S.; Bauer, A.; Bonicelli, J.; Gringmuth, M.; Fietz, S. A.; Aigner, A.; Richter, A.; Richter, F. Polyethylenimine nanoparticle-mediated siRNA delivery to reduce α-synuclein expression in a model of Parkinson’s disease. Mol. Ther. Nucleic Acids 2017, 9, 57–68.

    Google Scholar 

  77. Dehay, B.; Bourdenx, M.; Gorry, P.; Przedborski, S.; Vila, M.; Hunot, S.; Singleton, A.; Olanow, C. W.; Merchant, K. M.; Bezard, E. et al. Targeting α-synuclein for treatment of Parkinson’s disease: Mechanistic and therapeutic considerations. Lancet Neurol. 2015, 14, 855–866.

    Google Scholar 

  78. Abraham, S.; Soundararajan, C. C.; Vivekanandhan, S.; Behari, M. Erythrocyte antioxidant enzymes in Parkinson's disease. Indian J. Med. Res. 2005, 121, 111–115.

    Google Scholar 

  79. Surendran, S.; Rajasankar, S. Parkinson's disease: Oxidative stress and therapeutic approaches. Neurol. Sci. 2010, 31, 531–540.

    Google Scholar 

  80. Li, Y.; Cheng, Q.; Jiang, Q.; Huang, Y. Y.; Liu, H. M.; Zhao, Y. L.; Cao, W. P.; Ma, G. H.; Dai, F. Y.; Liang, X. J. et al. Enhanced endosomal/lysosomal escape by distearoyl phosphoethanolamine-polycarboxybetaine lipid for systemic delivery of siRNA. J. Control. Release 2014, 176, 104–114.

    Google Scholar 

  81. Lu, Z. G.; Li, Y.; Shi, Y. J.; Li, Y. H.; Xiao, Z. B.; Zhang, X. Traceable nanoparticles with spatiotemporally controlled release ability for synergistic glioblastoma multiforme treatment. Adv. Funct. Mater. 2017, 27, 1703967.

    Google Scholar 

  82. Kim, J. Y.; Choi, W. I.; Kim, Y. H.; Tae, G. Brain-targeted delivery of protein using chitosan-and RVG peptideconjugated, pluronic-based nano-carrier. Biomaterials 2013, 34, 1170–1178.

    Google Scholar 

  83. Prades, R.; Guerrero, S.; Araya, E.; Molina, C.; Salas, E.; Zurita, E.; Selva, J.; Egea, G.; López-Iglesias, C.; Teixidó, M. et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials 2012, 33, 7194–7205.

    Google Scholar 

  84. Barchet, T. M.; Amiji, M. M. Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert Opin. Drug Deliv. 2009, 6, 211–225.

    Google Scholar 

  85. Kabanov, A. V.; Gendelman, H. E. Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Prog. Polym. Sci. 2007, 32, 1054–1082.

    Google Scholar 

  86. Singh, R.; Lillard, J. W., Jr. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 2009, 86, 215–223.

    Google Scholar 

  87. Zhang, X. L.; Tian, Y. L.; Yuan, P.; Li, Y. Y.; Yaseen, M. A.; Grutzendler, J.; Moore, A.; Ran, C. Z. A bifunctional curcumin analogue for two-photon imaging and inhibiting crosslinking of amyloid beta in Alzheimer's disease. Chem. Commun. 2014, 50, 11550–11553.

    Google Scholar 

  88. Balducci, C.; Mancini, S.; Minniti, S.; La Vitola, P.; Zotti, M.; Sancini, G.; Mauri, M.; Cagnotto, A.; Colombo, L.; Fiordaliso, F. et al. Multifunctional liposomes reduce brain β-amyloid burden and ameliorate memory impairment in Alzheimer's disease mouse models. J. Neurosci. 2014, 34, 14022–14031.

    Google Scholar 

  89. Bana, L.; Minniti, S.; Salvati, E.; Sesana, S.; Zambelli, V.; Cagnotto, A.; Orlando, A.; Cazzaniga, E.; Zwart, R.; Scheper, W. et al. Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Aβ aggregation features and cross the blood-brain-barrier: Implications for therapy of Alzheimer disease. Nanomedicine 2014, 10, 1583–1590.

    Google Scholar 

  90. Leyva-Gómez, G.; Cortés, H.; Magaña, J. J.; Leyva-García, N.; Quintanar-Guerrero, D.; Florán, B. Nanoparticle technology for treatment of Parkinson's disease: The role of surface phenomena in reaching the brain. Drug Discov. Today 2015, 20, 824–837.

    Google Scholar 

  91. Peng, H. S.; Liu, X. Y.; Wang, G. T.; Li, M. H.; Bratlie, K. M.; Cochran, E.; Wang, Q. Polymeric multifunctional nanomaterials for theranostics. J. Mater. Chem. B 2015, 3, 6856–6870.

    Google Scholar 

  92. Mourtas, S.; Lazar, A. N.; Markoutsa, E.; Duyckaerts, C.; Antimisiaris, S. G. Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur. J. Med. Chem. 2014, 80, 175–183.

    Google Scholar 

  93. Spuch, C.; Navarro, C. Liposomes for targeted delivery of active agents against neurodegenerative diseases (Alzheimer’s disease and Parkinson's disease). J. Drug Deliv. 2011, 2011, 469679.

    Google Scholar 

  94. Wong, H. L.; Wu, X. Y.; Bendayan, R. Nanotechnological advances for the delivery of CNS therapeutics. Adv. Drug Deliv. Rev. 2012, 64, 686–700.

    Google Scholar 

  95. During, M. J.; Freese, A.; Deutch, A. Y. Kibat, P.tG.; Sabel, B. A.; Langer, R.; Roth, R. H. Biochemical and behavioral recovery in a rodent model of Parkinson's disease following stereotactic implantation of dopamine-containing liposomes. {iExp. Neurol.} 1992, 115, 193–199.

    Google Scholar 

  96. Xiang, Y.; Wu, Q.; Liang, L.; Wang, X. Q.; Wang, J. C.; Zhang, X.; Pu, X. P.; Zhang, Q. Chlorotoxin-modified stealth liposomes encapsulating levodopa for the targeting delivery against Parkinson's disease in the MPTP-induced mice model. J. Drug Target. 2012, 20, 67–75.

    Google Scholar 

  97. Taylor, M.; Moore, S.; Mourtas, S.; Niarakis, A.; Re, F.; Zona, C.; La Ferla, B.; Nicotra, F.; Masserini, M.; Antimisiaris, S. G. et al. Effect of curcumin-associated and lipid ligand-functionalized nanoliposomes on aggregation of the Alzheimer’s Aβ peptide. Nanomedicine 2011, 7, 541–550.

    Google Scholar 

  98. Gobbi, M.; Re, F.; Canovi, M.; Beeg, M.; Gregori, M.; Sesana, S.; Sonnino, S.; Brogioli, D.; Musicanti, C.; Gasco, P. et al. Lipid-based nanoparticles with high binding affinity for amyloid-β1–42 peptide. Biomaterials 2010, 31, 6519–6529.

    Google Scholar 

  99. Ezzati Nazhad Dolatabadi, J.; Omidi, Y. Solid lipid-based nanocarriers as efficient targeted drug and gene delivery systems. TrAC Trend. Anal. Chem. 2016, 77, 100–108.

    Google Scholar 

  100. Muthu, M. S.; Leong, D. T.; Mei, L.; Feng, S. S. Nanotheranostics-application and further development of nanomedicine strategies for advanced theranostics. Theranostics 2014, 4, 660–677.

    Google Scholar 

  101. Tapeinos, C.; Battaglini, M.; Ciofani, G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J. Control. Release 2017, 264, 306–332.

    Google Scholar 

  102. Esposito, E.; Fantin, M.; Marti, M.; Drechsler, M.; Paccamiccio, L.; Mariani, P.; Sivieri, E.; Lain, F.; Menegatti, E.; Morari, M. et al. Solid lipid nanoparticles as delivery systems for bromocriptine. Pharm. Res. 2008, 25, 1521–1530.

    Google Scholar 

  103. Meng, F. F.; Asghar, S.; Gao, S. Y.; Su, Z. G.; Song, J.; Huo, M. R.; Meng, W. D.; Ping, Q. N.; Xiao, Y. Y. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer's disease. Colloids Surf. B. Biointerfaces 2015, 134, 88–97.

    Google Scholar 

  104. Pattni, B. S.; Chupin, V. V.; Torchilin, V. P. New developments in liposomal drug delivery. Chem. Rev. 2015, 115, 10938–10966.

    Google Scholar 

  105. Naseri, N.; Valzadeh, P.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure preparation and application. Adv. Pharm. Bull. 2015, 5, 305–313.

    Google Scholar 

  106. Brambilla, D.; Le Droumaguet, B.; Nicolas, J.; Hashemi, S. H.; Wu, L. P.; Moghimi, S. M.; Couvreur, P.; Andrieux, K. Nanotechnologies for Alzheimer's disease: Diagnosis, therapy, and safety issues. Nanomedicine 2011, 7, 521–540.

    Google Scholar 

  107. Goldsmith, M.; Abramovitz, L.; Peer, D. Precision nanomedicine in neurodegenerative diseases. ACS Nano 2014, 8, 1958–1965.

    Google Scholar 

  108. Risbud, M. V.; Bhonde, R. R. Polyacrylamide-chitosan hydrogels: In vitro biocompatibility and sustained antibiotic release studies. Drug Deliv. 2000, 7, 69–75.

    Google Scholar 

  109. Cho, Y.; Shi, R. Y.; Borgens, R. B. Chitosan nanoparticlebased neuronal membrane sealing and neuroprotection following acrolein-induced cell injury. J. Biol. Eng. 2010, 4, 2.

    Google Scholar 

  110. Pangestuti, R.; Kim, S. K. Neuroprotective properties of chitosan and its derivatives. Mar. Drugs 2010, 8, 2117–2128.

    Google Scholar 

  111. Sadigh-Etegbad, S.; Talebi, M.; Farboudi, M.; Mabmoudi, J.; Reybani, B. Effects of levodopa loaded chitosan nanoparticles on cell viability and caspase-3 expression in PC12 neural like cells. Neurosciences 2013, 18, 281–283.

    Google Scholar 

  112. Buschmann, M. D.; Merzouki, A.; Lavertu, M.; Thibault, M.; Jean, M.; Darras, V. Chitosans for delivery of nucleic acids. Adv. Drug Deliv. Rev. 2013, 65, 1234–1270.

    Google Scholar 

  113. Malhotra, M.; Tomaro-Duchesneau, C.; Prakash, S. Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases. Biomaterials 2013, 34, 1270–1280.

    Google Scholar 

  114. Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B. Biointerfaces 2010, 75, 1–18.

    Google Scholar 

  115. Tyler, B.; Gullotti, D.; Mangraviti, A.; Utsuki, T.; Brem, H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliv. Rev. 2016, 107, 163–175.

    Google Scholar 

  116. Zhang, C.; Wan, X.; Zheng, X. Y.; Shao, X. Y.; Liu, Q. F.; Zhang, Q. Z.; Qian, Y. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer's disease mice. Biomaterials 2014, 35, 456–465.

    Google Scholar 

  117. Zheng, X. Y.; Zhang, C.; Guo, Q.; Wan, X.; Shao, X. Y.; Liu, Q. F.; Zhang, Q. Z. Dual-functional nanoparticles for precise drug delivery to Alzheimer's disease lesions: Targeting mechanisms, pharmacodynamics and safety. Int. J. Pharm. 2017, 525, 237–248.

    Google Scholar 

  118. Zhang, C.; Zheng, X. Y.; Wan, X.; Shao, X. Y.; Liu, Q. F.; Zhang, Z. M.; Zhang, Q. Z. The potential use of H102 peptide-loaded dual-functional nanoparticles in the treatment of Alzheimer’s disease. J. Control. Release 2014, 192, 317–324.

    Google Scholar 

  119. Lu, J. M.; Wang, X. W.; Marin-Muller, C.; Wang, H.; Lin, P. H.; Yao, Q. Z.; Chen, C. Y. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev. Mol. Diagn. 2009, 9, 325–341.

    Google Scholar 

  120. Zhang, Z. Y.; Bi, X. L.; Li, H.; Huang, G. H. Enhanced targeting efficiency of PLGA microspheres loaded with Lornoxicam for intra-articular administration. Drug Deliv. 2011, 18, 536–544.

    Google Scholar 

  121. Mathew, A.; Fukuda, T.; Nagaoka, Y.; Hasumura, T.; Morimoto, H.; Yoshida, Y.; Maekawa, T.; Venugopal, K.; Kumar, D. S. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One 2012, 7, e32616.

    Google Scholar 

  122. Pahuja, R.; Seth, K.; Shukla, A.; Shukla, R. K.; Shukla, R. K.; Bhatnagar, P.; Chauhan, L. K. S.; Saxena, P. N.; Arun, J.; Chaudhari, B. P. et al. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in Parkinsonian rats. ACS Nano 2015, 9, 4850–4871.

    Google Scholar 

  123. Herrάn, E.; Pérez-Gonzάlez, R.; Igartua, M.; Pedraz, J. L.; Carro, E.; Hernάndez, R. M. VEGF-releasing biodegradable nanospheres administered by craniotomy: A novel therapeutic approach in the APP/Ps1 mouse model of Alzheimer’s disease. J. Control. Release 2013, 170, 111–119.

    Google Scholar 

  124. Zhang, R.; Li, Y.; Hu, B. B.; Lu, Z. G.; Zhang, J. C.; Zhang, X. Traceable nanoparticle delivery of small interfering RNA and retinoic acid with temporally release ability to control neural stem cell differentiation for Alzheimer’s disease therapy. Adv. Mater. 2016, 28, 6345–6352.

    Google Scholar 

  125. Li, Y.; Li, Y. H.; Ji, W. H.; Lu, Z. G.; Liu, L. Y.; Shi, Y. J.; Ma, G. H.; Zhang, X. Positively charged polyprodrug amphiphiles with enhanced drug loading and reactive oxygen species-responsive release ability for traceable synergistic therapy. J. Am. Chem. Soc. 2018, 140, 4164–4171.

    Google Scholar 

  126. Vio, V.; Marchant, M. J.; Araya, E.; Kogan, M. J. Metal nanoparticles for the treatment and diagnosis of neurodegenerative brain diseases. Curr. Pharm. Des. 2017, 23, 1916–1926.

    Google Scholar 

  127. Cheng, K. K.; Chan, P. S.; Fan, S. J.; Kwan, S. M.; Yeung, K. L.; Wáng, Y. X. J.; Chow, A. H. L.; Wu, E. X.; Baum, L. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials 2015, 44, 155–172.

    Google Scholar 

  128. Neey, A.; Perry, C.; Varsli, B.; Singh, A. K.; Arbneshi, T.; Senapati, D.; Kalluri, J. R.; Ray, P. C. Ultrasensitive and high selective detection of Alzheimer's disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano 2009, 3, 2834–2840.

    Google Scholar 

  129. Li, M.; Guan, Y. J.; Zhao, A. D.; Ren, J. S.; Qu, X. G. Using multifunctional peptide conjugated Au nanorods for monitoring β-amyloid aggregation and chemo-photothermal treatment of Alzheimer’s disease. Theranostics 2017, 7, 2996–3006.

    Google Scholar 

  130. Zhang, M.; Mao, X. B.; Yu, Y.; Wang, C. X.; Yang, Y. L.; Wang, C. Nanomaterials for reducing amyloid cytotoxicity. Adv. Mater. 2013, 25, 3780–3801.

    Google Scholar 

  131. Xiao, L. H.; Zhao, D.; Chan, W. H.; Choi, M. M.; Li, H. W. Inhibition of beta 1–40 amyloid fibrillation with N-acetyl-L-cysteine capped quantum dots. Biomaterials 2010, 31, 91–98.

    Google Scholar 

  132. Karakoti, A. S.; Singh, S.; Kumar, A.; Malinska, M.; Kuchibhatla, S. V. N. T.; Wozniak, K.; Self, W. T.; Seal, S. PEGylated nanoceria as radical scavenger with tunable redox chemistry. J. Am. Chem. Soc. 2009, 131, 14144–14145.

    Google Scholar 

  133. Kwon, H. J.; Cha, M. Y.; Kim, D.; Kim, D. K.; Soh, M.; Shin, K.; Hyeon, T.; Mook-Jung, I. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano 2016, 10, 2860–2870.

    Google Scholar 

  134. Li, S. L.; Liu, Z. H.; Ji, F. T.; Xiao, Z. J.; Wang, M. J.; Peng, Y. J.; Zhang, Y. L.; Liu, L.; Liang, Z. B.; Li, F. Delivery of quantum dot-siRNA nanoplexes in SK-N-SH cells for BACE1 gene silencing and intracellular imaging. Mol. Ther. Nucleic Acids 2012, 1, e20.

    Google Scholar 

  135. Niu, S. Q.; Zhang, L. K.; Zhang, L.; Zhuang, S. Y.; Zhan, X. Y.; Chen, W. Y.; Du, S. W.; Yin, L.; You, R.; Li, C. H. et al. Inhibition by multifunctional magnetic nanoparticles loaded with alpha-synuclein RNAi plasmid in a Parkinson’s disease model. Theranostics 2017, 7, 344–356.

    Google Scholar 

  136. Geng, J.; Li, M.; Wu, L.; Chen, C. E.; Qu, X. G. Mesoporous silica nanoparticle-based H2O2 responsive controlled-release system used for Alzheimer’s disease treatment. Adv. Healthc. Mater. 2012, 1, 332–336.

    Google Scholar 

  137. Shi, P.; Li, M.; Ren, J. S.; Qu, X. G. Gold nanocage-based dual responsive “caged metal chelator” release system: Noninvasive remote control with near infrared for potential treatment of Alzheimer's disease. Adv. Funct. Mater. 2013, 23, 5412–5419.

    Google Scholar 

  138. Skaat, H.; Shafir, G.; Margel, S. Acceleration and inhibition of amyloid-β fibril formation by peptide-conjugated fluorescent-maghemite nanoparticles. J. Nanopart. Res. 2011, 13, 3521–3534.

    Google Scholar 

  139. Hu, B. B.; Dai, F. Y.; Fan, Z. M.; Ma, G. H.; Tang, Q. W.; Zhang, X. Nanotheranostics: Congo red/rutin-MNPs with enhanced magnetic resonance imaging and H2O2-responsive therapy of Alzheimer’s disease in APPswe/PS1dE9 transgenic mice. Adv. Mater. 2015, 27, 5499–5505.

    Google Scholar 

  140. Hu, Y. L.; Gao, J. Q. Potential neurotoxicity of nanoparticles. Int. J. Pharm. 2010, 394, 115–121.

    Google Scholar 

  141. Ng, K. K.; Lovell, J. F.; Zhang, G. Lipoprotein-inspired nanoparticles for cancer theranostics. Acc. Chem. Res. 2011, 44, 1105–1113.

    Google Scholar 

  142. Song, Q. X.; Huang, M.; Yao, L.; Wang, X. L.; Gu, X.; Chen, J.; Chen, J.; Huang, J. L.; Hu, Q. Y.; Kang, T. et al. Lipoprotein-based nanoparticles rescue the memory loss of mice with Alzheimer’s disease by accelerating the clearance of amyloid-beta. ACS Nano 2014, 8, 2345–2359.

    Google Scholar 

  143. Huang, M.; Hu, M.; Song, Q. X.; Song, H. H.; Huang, J. L.; Gu, X.; Wang, X. L.; Chen, J.; Kang, T.; Feng, X. Y. et al. GM1-modified lipoprotein-like nanoparticle: Multifunctional nanoplatform for the combination therapy of Alzheimer’s disease. ACS Nano 2015, 9, 10801–10816.

    Google Scholar 

  144. He, C. J.; Zheng, S.; Luo, Y.; Wang, B. Exosome theranostics: Biology and translational medicine. Theranostics 2018, 8, 237–255.

    Google Scholar 

  145. Lakhal, S.; Wood, M. J. A. Exosome nanotechnology: An emerging paradigm shift in drug delivery: Exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. Bioessays 2011, 33, 737–741.

    Google Scholar 

  146. Théry, C.; Zitvogel, L.; Amigorena, S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol. 2002, 2, 569–579.

    Google Scholar 

  147. Kalani, A.; Tyagi, A.; Tyagi, N. Exosomes: Mediators of neurodegeneration, neuroprotection and therapeutics. Mol. Neurobiol. 2014, 49, 590–600.

    Google Scholar 

  148. Vlassov, A. V.; Magdaleno, S.; Setterquist, R.; Conrad, R. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta 2012, 1820, 940–948.

    Google Scholar 

  149. Tan, A.; Rajadas, J.; Seifalian, A. M. Exosomes as nano-theranostic delivery platforms for gene therapy. Adv. Drug Deliv. Rev. 2013, 65, 357–367.

    Google Scholar 

  150. van den Boor, J. G.; Schlee, M.; Coch, C.; Hartmann, G. SiRNA delivery with exosome nanoparticles. Nat. Biotechnol. 2011, 29, 325–326.

    Google Scholar 

  151. El Andaloussi, S.; Lakhal, S.; Mäger, I.; Wood, M. J. A. Exosomes for targeted siRNA delivery across biological barriers. Adv. Drug Deliv. Rev. 2013, 65, 391–397.

    Google Scholar 

  152. Théry, C.; Regnault, A.; Garin, J.; Wolfers, J.; Zitvogel, L.; Ricciardi-Castagnoli, P.; Raposo, G.; Amigorena, S. Molecular characterization of dendritic cell-derived exosomes: Selective accumulation of the heat shock protein HSC 73. J. Cell Biol. 1999, 147, 599–610.

    Google Scholar 

  153. Alvarez-Erviti, L.; Seow, Y.; Yin, H. F.; Betts, C.; Lakhal, S.; Wood, M. J. A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011, 29, 341–345.

    Google Scholar 

  154. Nakase, I.; Noguchi, K.; Fujii, I.; Futaki, S. Vectorization of biomacromolecules into cells using extracellular vesicles with enhanced internalization induced by macropinocytosis. Sci. Rep. 2016, 6, 34937.

    Google Scholar 

  155. Johnsen, K. B.; Gudbergsson, J. M.; Skov, M. N.; Pilgaard, L.; Moos, T.; Duroux, M. A comprehensive overview of exosomes as drug delivery vehicles—Endogenous nanocarriers for targeted cancer therapy. Biochim. Biophys. Acta 2014, 1846, 75–87.

    Google Scholar 

  156. Zhuang, X. Y.; Xiang, X. Y.; Grizzle, W.; Sun, D. M.; Zhang, S. Q.; Axtell, R. C.; Ju, S. W.; Mu, J. Y.; Zhang, L. F.; Steinman, L. et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated antiinflammatory drugs from the nasal region to the brain. Mol. Ther. 2011, 19, 1769–1779.

    Google Scholar 

  157. Sun, D. M.; Zhuang, X. Y.; Xiang, X. Y.; Liu, Y. L.; Zhang, S. Y.; Liu, C. R.; Barnes, S.; Grizzle, W.; Miller, D.; Zhang, H. G. A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther. 2010, 18, 1606–1614.

    Google Scholar 

  158. Haney, M. J.; Klyachko, N. L.; Zhao, Y. L.; Gupta, R.; Plotnikova, E. G.; He, Z. J.; Patel, T.; Piroyan, A.; Sokolsky, M.; Kabanov, A. V. et al. Exosomes as drug delivery vehicles for Parkinson's disease therapy. J. Control. Release 2015, 207, 18–30.

    Google Scholar 

  159. Jarmalavičiūtė, A.; Pivoriūnas, A. Exosomes as a potential novel therapeutic tools against neurodegenerative diseases. Pharmacol. Res. 2016, 113, 816–822.

    Google Scholar 

  160. Chen, T. S.; Arslan, F.; Yin, Y. J.; Tan, S. S.; Lai, R. C.; Choo, A. B. H.; Padmanabhan, J.; Lee, C. N.; de Kleijn, D. P. V.; Lim, S. K. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J. Transl. Med. 2011, 9, 47.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National High Technology Research and Development Program (No. 2016YFA0200303), the Beijing Natural Science Foundation (No. L172046), the National Natural Science Foundation of China (Nos. 31522023, 51373177, and 51573188), the Beijing Municipal Science & Technology Commission (No. Z161100002616015), and the “Strategic Priority Research Program Research Program” of the Chinese Academy of Sciences (No. XDA09030301-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, R., Ji, W. et al. Delivery systems for theranostics in neurodegenerative diseases. Nano Res. 11, 5535–5555 (2018). https://doi.org/10.1007/s12274-018-2067-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2067-z

Keywords

Navigation