Skip to main content
Log in

Development of fluorinated polyplex nanoemulsions for improved small interfering RNA delivery and cancer therapy

  • Reserach Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report the development of a small interfering RNA (siRNA) delivery vector based on cationic perfluorocarbon nanoemulsions. We have prepared perfluorodecalin (PFD) emulsions with a positive surface charge provided by a fluorinated poly(ethylenimine) (F-PEI). The fluorinated emulsion (F-PEI@PFD) reduced cytotoxicity of F-PEI and demonstrated effective binding with siRNAs to form nanosized emulsion polyplexes. The prepared emulsion polyplexes enhanced cellular uptake and improved endosomal escape of the siRNA. In addition to increased reporter gene silencing in multiple cancer cell lines, when compared with control F-PEI and PEI polyplexes, the siRNA emulsion polyplexes showed an excellent resistance to serum deactivation and maintained high activity, even in high-serum conditions. The F-PEI@PFD emulsion polyplexes carrying an siRNA to silence the expression of Bcl2 gene induced apoptosis and inhibited tumor growth in a melanoma mouse model in vivo and showed potential for in vivo ultrasound imaging. This study demonstrates the potential of F-PEI@PFD emulsions as a multifunctional theranostic nanoplatform for safe siRNA delivery, with integrated ultrasound imaging functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, S. Y.; Lopez-Berestein, G.; Calin, G. A.; Sood, A. K. Rnai therapies: Drugging the undruggable. Sci. Transl. Med. 2014, 6, 240ps7.

    Google Scholar 

  2. Whitehead, K. A.; Langer, R.; Anderson, D. G. Knocking down barriers: Advances in sirna delivery. Nat. Rev. Drug Discov. 2009, 8, 129–138.

    Article  Google Scholar 

  3. Lächelt, U.; Wagner, E. Nucleic acid therapeutics using polyplexes: A journey of 50 years (and beyond). Chem. Rev. 2015, 115, 11043–11078.

    Article  Google Scholar 

  4. Yamano, S.; Dai, J.; Hanatani, S.; Haku, K.; Yamanaka, T.; Ishioka, M.; Takayama, T.; Yuvienco, C.; Khapli, S.; Moursi, A. M. et al. Long-term efficient gene delivery using polyethylenimine with modified tat peptide. Biomaterials 2014, 35, 1705–1715.

    Article  Google Scholar 

  5. Pack, D. W.; Hoffman, A. S.; Pun, S.; Stayton, P. S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 2005, 4, 581–593.

    Article  Google Scholar 

  6. Kunath, K.; Von Harpe, A.; Fischer, D.; Petersen, H.; Bickel, U.; Voigt, K.; Kissel, T. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: Comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecularweight polyethylenimine. J. Control. Release 2003, 89, 113–125.

    Article  Google Scholar 

  7. Ma, Y. Z.; Chen, B. Z.; He, N.; Chen, G. J.; Li, L. W.; Wu, C. Revisiting complexation between DNA and polyethylenimine: Does the disulfide linkage play a critical role in promoting gene delivery? Macromol. Biosci. 2014, 14, 1807–1815.

    Google Scholar 

  8. Hall, A.; Parhamifar, L.; Lange, M. K.; Meyle, K. D.; Sanderhoff, M.; Andersen, H.; Roursgaard, M.; Larsen, A. K.; Jensen, P. B.; Christensen, C. et al. Polyethylenimine architecture-dependent metabolic imprints and perturbation of cellular redox homeostasis. Biochim. Biophys. Acta 2015, 1847, 328–342.

    Article  Google Scholar 

  9. Khansarizadeh, M.; Mokhtarzadeh, A.; Rashedinia, M.; Taghdisi, S. M.; Lari, P.; Abnous, K. H.; Ramezani, M. Identification of possible cytotoxicity mechanism of polyethylenimine by proteomics analysis. Hum. Exp. Toxicol. 2016, 35, 377–387.

    Article  Google Scholar 

  10. Shen, W. W.; Wang, H.; Ling-Hu, Y.; Lv, J.; Chang, H.; Cheng, Y. Y. Screening of efficient polymers for sirna delivery in a library of hydrophobically modified polyethyleneimines. J. Mater. Chem. B 2016, 4, 6468–6474.

    Article  Google Scholar 

  11. Park, K.; Lee, M. Y.; Kim, K. S.; Hahn, S. K. Target specific tumor treatment by VEGF siRNA complexed with reducible polyethyleneimine-hyaluronic acid conjugate. Biomaterials 2010, 31, 5258–5265.

    Article  Google Scholar 

  12. Gosselin, M. A.; Guo, W. J.; Lee, R. J. Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjug. Chem. 2001, 12, 989–994.

    Article  Google Scholar 

  13. Breunig, M.; Lungwitz, U.; Liebl, R.; Goepferich, A. Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc. Natl. Acad. Sci. USA 2007, 104, 14454–14459.

    Article  Google Scholar 

  14. Thomas, M.; Ge, Q.; Lu, J. J.; Chen, J. Z.; Klibanov, A. Cross-linked small polyethylenimines: While still nontoxic, deliver DNA efficiently to mammalian cells in vitro and in vivo. Pharm. Res. 2005, 22, 373–380.

    Article  Google Scholar 

  15. Yang, X. Z.; Du, J. Z.; Dou, S.; Mao, C. Q.; Long, H. Y.; Wang, J. Sheddable ternary nanoparticles for tumor aciditytargeted sirna delivery. ACS Nano 2012, 6, 771–781.

    Article  Google Scholar 

  16. Pai Kasturi, S.; Qin, H.; Thomson, K. S.; El-Bereir, S.; Cha, S. C.; Neelapu, S.; Kwak, L. W.; Roy, K. Prophylactic anti-tumor effects in a b cell lymphoma model with DNA vaccines delivered on polyethylenimine (PEI) functionalized plga microparticles. J. Control. Release 2006, 113, 261–270.

    Article  Google Scholar 

  17. Oster, C. G.; Kim, N.; Grode, L.; Barbu-Tudoran, L.; Schaper, A. K.; Kaufmann, S. H. E.; Kissel, T. Cationic microparticles consisting of poly(lactide-co-glycolide) and polyethylenimine as carriers systems for parental DNA vaccination. J. Control. Release 2005, 104, 359–377.

    Article  Google Scholar 

  18. Bivasbenita, M.; Romeijn, S.; Junginger, H. E.; Borchard, G. PLGA-PEI nanoparticles for gene delivery to pulmonary epithelium. Eur. J. Pharm. Biopharm. 2004, 58, 1–6.

    Article  Google Scholar 

  19. Duan, J. L.; Dong, J. L.; Zhang, T. T.; Su, Z. Y.; Ding, J.; Zhang, Y.; Mao, X. H. Polyethyleneimine-functionalized iron oxide nanoparticles for systemic sirna delivery in experimental arthritis. Nanomedicine 2014, 9, 789–801.

    Article  Google Scholar 

  20. Wang, M. M.; Liu, H. M.; Li, L.; Cheng, Y. Y. A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat. Commun. 2014, 5, 3053.

    Article  Google Scholar 

  21. Liu, H. M.; Wang, Y.; Wang, M. M.; Xiao, J. R.; Cheng, Y. Y. Fluorinated poly(propylenimine) dendrimers as gene vectors. Biomaterials 2014, 35, 5407–5413.

    Article  Google Scholar 

  22. Wu, T.; Wang, L. H.; Ding, S. G.; You, Y. Z. Fluorinated PEG-polypeptide polyplex micelles have good serumresistance and low cytotoxicity for gene delivery. Macromol. Biosci. 2017, 17, 1700114.

    Article  Google Scholar 

  23. Cheng Y. Y. Fluorinated polymers in gene delivery. Acta Polym. Sin. 2017, 1234–1245.

    Google Scholar 

  24. He, B. W.; Wang, Y. T.; Shao, N. M.; Chang, H.; Cheng, Y. Y. Polymers modified with double-tailed fluorous compounds for efficient DNA and siRNA delivery. Acta Biomater. 2015, 22, 111–119.

    Article  Google Scholar 

  25. Wang, M. M.; Cheng, Y. Y. The effect of fluorination on the transfection efficacy of surface-engineered dendrimers. Biomaterials 2014, 35, 6603–6613.

    Article  Google Scholar 

  26. Liu, H. M.; Chang, H.; Lv, J.; Jiang, C.; Li, Z. X.; Wang, F.; Wang, F.; Wang, M. M.; Liu, C. Y.; Wang, X. Y. et al. Screening of efficient sirna carriers in a library of surfaceengineered dendrimers. Sci. Rep. 2016, 6, 25069.

    Article  Google Scholar 

  27. Wang, H.; Hu, J. J.; Cai, X. P.; Xiao, J. R.; Cheng, Y. Y. Self-assembled fluorodendrimers in the co-delivery of fluorinated drugs and therapeutic genes. Polym. Chem. 2016, 7, 2319–2322.

    Article  Google Scholar 

  28. Xiong, S. D.; Li, L.; Jiang, J.; Tong, L. P.; Wu, S. L.; Xu, Z. S.; Chu, P. K. Cationic fluorine-containing amphiphilic graft copolymers as DNA carriers. Biomaterials 2010, 31, 2673–2685.

    Article  Google Scholar 

  29. Horváth, I. T.; Rábai, J. Facile catalyst separation without water: Fluorous biphase hydroformylation of olefins. Science 1994, 266, 72–75.

    Article  Google Scholar 

  30. Wang, Y. T.; Wang, M. M.; Chen, H.; Liu, H. M.; Zhang, Q.; Cheng, Y. Y. Fluorinated dendrimer for TRAIL gene therapy in cancer treatment. J. Mater. Chem. B 2016, 4, 1354–1360.

    Article  Google Scholar 

  31. Criscione, J. M.; Le, B. L.; Stern, E.; Brennan, M.; Rahner, C.; Papademetris, X.; Fahmy, T. M. Self-assembly of ph-responsive fluorinated dendrimer-based particulates for drug delivery and noninvasive imaging. Biomaterials 2009, 30, 3946–3955.

    Article  Google Scholar 

  32. Takaoka, Y.; Sakamoto, T.; Tsukiji, S.; Narazaki, M.; Matsuda, T.; Tochio, H.; Shirakawa, M.; Hamachi, I. Selfassembling nanoprobes that display off/on 19F nuclear magnetic resonance signals for protein detection and imaging. Nat. Chem. 2009, 1, 557–561.

    Article  Google Scholar 

  33. Wang, H.; Wang, Y. T.; Wang, Y.; Hu, J. J.; Li, T. F.; Liu, H. M.; Zhang, Q.; Cheng, Y. Y. Self-assembled fluorodendrimers combine the features of lipid and polymeric vectors in gene delivery. Angew. Chem., Int. Ed. 2015, 54, 11647–11651.

    Article  Google Scholar 

  34. Wang, L. H.; Wu, D. C.; Xu, H. X.; You, Y. Z. High DNA-binding affinity and gene-transfection efficacy of bioreducible cationic nanomicelles with a fluorinated core. Angew. Chem., Int. Ed. 2016, 55, 755–759.

    Article  Google Scholar 

  35. Johnson, M. E.; Shon, J.; Guan, B. M.; Patterson, J. P.; Oldenhuis, N. J.; Eldredge, A. C.; Gianneschi, N. C.; Guan, Z. B. Fluorocarbon modified low-molecular-weight polyethylenimine for sirna delivery. Bioconjug. Chem. 2016, 27, 1784–1788.

    Article  Google Scholar 

  36. Palmer, A. F.; Marcos, I. Blood substitutes. Annu. Rev. Biomed. Eng. 2014, 16, 77–101.

    Article  Google Scholar 

  37. Yao, Y. J.; Zhang, M. M.; Liu, T.; Zhou, J.; Gao, Y.; Wen, Z. F.; Guan, J.; Zhu, J.; Lin, Z. F.; He, D. N. Perfluorocarbonencapsulated PLGA-PEG emulsions as enhancement agents for highly efficient reoxygenation to cell and organism. ACS Appl. Mater. Interfaces 2015, 7, 18369–18678.

    Article  Google Scholar 

  38. Lanza, G. M.; Yu, X.; Winter, P. M.; Abendschein, D. R.; Karukstis, K. K.; Scott, M. J.; Chinen, L. K.; Fuhrhop, R. W.; Scherrer, D. E.; Wickline, S. A. Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: Implications for rational therapy of restenosis. Circulation 2002, 106, 2842–4847.

    Article  Google Scholar 

  39. Schmieder, A. H.; Caruthers, S. D.; Keupp, J.; Wickline, S. A.; Lanza, G. M. Recent advances in 19fluorine magnetic resonance imaging with perfluorocarbon emulsions. Engineering 2015, 1, 475–489.

    Article  Google Scholar 

  40. Tran, T. D.; Caruthers, S. D.; Hughes, M.; Marsh, J. N.; Cyrus, T.; Winter, P. M.; Neubauer, A. M.; Wickline, S. A.; Lanza, G. M. Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics. Int. J. Nanomedicine 2007, 2, 515–526.

    Google Scholar 

  41. Wilson, K.; Homan, K.; Emelianov, S. Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat. Commun. 2012, 3, 618.

    Article  Google Scholar 

  42. Winter, P. M. Perfluorocarbon nanoparticles: Evolution of a multimodality and multifunctional imaging agent. Scientifica 2014, 2014, 746574.

    Article  Google Scholar 

  43. Shin, S. H.; Park, E. J.; Min, C.; Sun, I. C.; Jeon, S.; Kim, Y. H.; Kim, D. Tracking perfluorocarbon nanoemulsion delivery by 19F MRI for precise high intensity focused ultrasound tumor ablation. Theranostics 2017, 7, 562–572.

    Article  Google Scholar 

  44. Wang, J. Y.; Li, P.; Tian, R.; Hu, W. J.; Zhang, Y. X.; Yuan, P.; Tang, Y. L.; Jia, Y. T.; Zhang, L. K. et al. A novel microbubble capable of ultrasound-triggered release of drug-loaded nanoparticles. J. Biomed. Nanotechnol. 2016, 12, 516–524.

    Article  Google Scholar 

  45. Gao, D.; Xu, M.; Cao, Z.; Gao, J. B.; Chen, Y.; Li, Y. Q.; Yang, Z.; Xie, X. Y.; Jiang, Q.; Wang, W. et al. Ultrasoundtriggered phase-transition cationic nanodroplets for enhanced gene delivery. ACS Appl. Mater. Interfaces 2015, 7, 13524–13537.

    Article  Google Scholar 

  46. Lattin, J. R.; Javadi, M.; McRae, M.; Pitt, W. G. Cytosolic delivery via escape from the endosome using emulsion droplets and ultrasound. J. Drug Target. 2015, 23, 469–479.

    Article  Google Scholar 

  47. Ma, M.; Xu, H. X.; Chen, H. R.; Jia, X. Q.; Zhang, K.; Wang, Q.; Zheng, S. G.; Wu, R.; Yao, M. H.; Cai, X. J. et al. A drug–perfluorocarbon nanoemulsion with an ultrathin silica coating for the synergistic effect of chemotherapy and ablation by high-intensity focused ultrasound. Adv. Mater. 2014, 26, 7378–7385.

    Article  Google Scholar 

  48. Medina, S. H.; Michie, M. S.; Miller, S. E.; Schnermann, M. J.; Schneider, J. P. Fluorous phase-directed peptide assembly affords nano-peptisomes capable of ultrasoundtriggered cellular delivery. Angew. Chem., Int. Ed. 2017, 56, 11404–11408.

    Article  Google Scholar 

  49. Fang, J. Y.; Hung, C. F.; Hua, S. C.; Hwang, T. L. Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: Drug release and cytotoxicity against cancer cells. Ultrasonics 2009, 49, 39–46.

    Article  Google Scholar 

  50. Gao, D.; Gao, J. B.; Xu, M.; Cao, Z.; Zhou, L. Y.; Li, Y. Q.; Xie, X. Y.; Jiang, Q.; Wang, W.; Liu, J. Targeted ultrasound-triggered phase transition nanodroplets for her2- overexpressing breast cancer diagnosis and gene transfection. Mol. Pharmaceutics 2017, 14, 984–998.

    Article  Google Scholar 

  51. Wang, K. K.; Zhang, Y. F.; Wang, J.; Yuan, A. H.; Sun, M. J.; Wu, J. H.; Hu, Y. Q. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci. Rep. 2016, 6, 27421.

    Article  Google Scholar 

  52. Tian, J. W.; Ding, L.; Xu, H. J.; Shen, Z.; Ju, H. X.; Jia, L.; Bao, L.; Yu, J. S. Cell-specific and ph-activatable rubyrin loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer. J. Am. Chem. Soc. 2013, 135, 18850–18858.

    Article  Google Scholar 

  53. Lv, J.; Chang, H.; Wang, Y.; Wang, M. M.; Xiao, J. R.; Zhang, Q.; Cheng, Y. Y. Fluorination on polyethylenimine allows efficient 2D and 3D cell culture gene delivery. J. Mater. Chem. B 2015, 3, 642–650.

    Article  Google Scholar 

  54. Neuberg, P.; Kichler, A. Chapter nine—Recent developments in nucleic acid delivery with polyethylenimines. Adv. Genet. 2014, 88, 263–288.

    Google Scholar 

  55. Chen, G.; Wang, K. K.; Hu, Q.; Ding, L.; Yu, F.; Zhou, Z. W.; Zhou, Y. W.; Li, J.; Sun, M. J.; Oupický, D. Combining fluorination and bioreducibility for improved siRNA polyplex delivery. ACS Appl. Mater. Interfaces 2017, 9, 4457–4466.

    Article  Google Scholar 

  56. Cook, C. A.; Hahn, K. C.; Morrissette-Mcalmon, J. B. F.; Grayson, W. L. Oxygen delivery from hyperbarically loaded microtanks extends cell viability in anoxic environments. Biomaterials 2015, 52, 376–384.

    Article  Google Scholar 

  57. Castro, C. I.; Briceno, J. C. Perfluorocarbon-based oxygen carriers: Review of products and trials. Artif. Organs 2010, 34, 622–634.

    Google Scholar 

  58. Czabotar, P. E.; Lessene, G.; Strasser, A.; Adams, J. M. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 2014, 15, 49–63.

    Article  Google Scholar 

  59. Lin, C.; Zhong, Z. Y.; Lok, M. C.; Jiang, X. L.; Hennink, W. E.; Feijen, J.; Engbersen, J. F. J. Linear poly(amido amine)s with secondary and tertiary amino groups and variable amounts of disulfide linkages: Synthesis and in vitro gene transfer properties. J. Control. Release 2006, 116, 130–137.

    Article  Google Scholar 

  60. Deshpande, N.; Needles, A.; Willmann, J. K. Molecular ultrasound imaging: Current status and future directions. Clin. Radiol. 2010, 65, 567–581.

    Article  Google Scholar 

  61. Wrobeln, A.; Schlüter, K. D.; Linders, J.; Zähres, M.; Mayer, C.; Kirsch, M.; Ferenz, K. B. Functionality of albuminderived perfluorocarbon-based artificial oxygen carriers in the langendorff-heart. Artif. Cells Nanomed. Biotechnol. 2017, 45, 723–730.

    Article  Google Scholar 

  62. Díaz-López, R.; Tsapis, N.; Santin, M.; Bridal, S. L.; Nicolas, V.; Jaillard, D.; Libong, D.; Chaminade, P.; Marsaud, V.; Vauthier, C. et al. The performance of pegylated nanocapsules of perfluorooctyl bromide as an ultrasound contrast agent. Biomaterials 2010, 31, 1723–1731.

    Article  Google Scholar 

  63. Sun, L.; Huang, C. W.; Wu, J.; Chen, K. J.; Li, S. H.; Weisel, R. D.; Rakowski, H.; Sung, H. W.; Li, R. K. The use of cationic microbubbles to improve ultrasound-targeted gene delivery to the ischemic myocardium. Biomaterials 2013, 34, 2107–2116.

    Article  Google Scholar 

  64. Javadi, M.; Pitt, W. G.; Tracy, C. M.; Barrow, J. R.; Willardson, B. M.; Hartley, J. M.; Tsosie, N. H. Ultrasonic gene and drug delivery using eliposomes. J. Control. Release 2013, 167, 92–100.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science and Technology Major Project (No. 2017YFA0205400), the Changjiang Scholar program, the National Natural Science Foundation of China (Nos. 81373983 and 81573377), China Postdoctoral Science Foundation (No. 2016M601923), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX17_0671).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Oupický.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Wang, K., Wu, P. et al. Development of fluorinated polyplex nanoemulsions for improved small interfering RNA delivery and cancer therapy. Nano Res. 11, 3746–3761 (2018). https://doi.org/10.1007/s12274-017-1946-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1946-z

Keywords

Navigation