Skip to main content
Log in

Controlled growth and photoconductive properties of hexagonal SnS2 nanoflakes with mesa-shaped atomic steps

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We demonstrated the controlled growth of two-dimensional (2D) hexagonal tin disulfide (SnS2) nanoflakes with stacked monolayer atomic steps. The morphology was similar to flat-topped and step-sided mesa plateaus or step pyramids. The SnS2 nanoflakes were grown on mica substrates via an atmospheric-pressure chemical vapor deposition process using tin monosulfide and sulfur powder as precursors. Atomic force microscopy (AFM), electron microscopy, and Raman characterizations were performed to investigate the structural features, and a sequential layer-wise epitaxial growth mechanism was revealed. In addition, systematic Raman characterizations were performed on individual SnS2 nanoflakes with a wide range of thicknesses (1–100 nm), indicating that the A1g peak intensity and Raman shifts were closely related to the thickness of the SnS2 nanoflakes. Moreover, photoconductive AFM was performed on the monolayer-stepped SnS2 nanoflakes, revealing that the flat surface and the edges of the SnS2 atomic steps had different electrical conductive properties and photoconductive behaviors. This is ascribed to the dangling bonds and defects at the atomic step edges, which caused a height difference of the Schottky barriers formed at the interfaces between the PtIr-coated AFM tip and the step edges or the flat surface of the SnS2 nanoflakes. The 2D SnS2 crystals with regular monolayer atomic steps and fast photoresponsivity are promising for novel applications in photodetectors and integrated optoelectronic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. A.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  2. Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K.; Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 2004, 430, 870–873.

    Article  Google Scholar 

  3. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  Google Scholar 

  4. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  5. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

    Article  Google Scholar 

  6. Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.

    Article  Google Scholar 

  7. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Largearea synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  8. Mas-Ballesté, R.; Gómez-Navarro, C.; Gómez-Herrero, J.; Zamora, F. 2D materials: To graphene and beyond. Nanoscale 2011, 3, 20–30.

    Article  Google Scholar 

  9. Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

    Article  Google Scholar 

  10. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  Google Scholar 

  11. van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G.-H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

    Article  Google Scholar 

  12. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  13. Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498.

    Article  Google Scholar 

  14. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  Google Scholar 

  15. Li, H.; Wu, J.; Yin, Z. Y.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 47, 1067–1075.

    Article  Google Scholar 

  16. Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.

    Article  Google Scholar 

  17. Zhang, Y.; Chang, T. R.; Zhou, B.; Cui, Y. T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111–115.

    Article  Google Scholar 

  18. Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.

    Article  Google Scholar 

  19. Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

    Article  Google Scholar 

  20. Hong, X. P.; Kim, J.; Shi, S.-F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.

    Article  Google Scholar 

  21. Late, D. J.; Liu, B.; Luo, J. J.; Yan, A. M.; Matte, H. S. S. R.; Grayson, M.; Rao, C. N. R.; Dravid, V. P. GaS and GaSe ultrathin layer transistors. Adv. Mater. 2012, 24, 3549–3554.

    Article  Google Scholar 

  22. Hu, P. A.; Wang, L. F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X. N.; Wen, Z. Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B. et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 2013, 13, 1649–1654.

    Article  Google Scholar 

  23. Park, K. H.; Jang, K.; Son, S. U. Synthesis, optical properties, and self-assembly of ultrathin hexagonal In2S3 nanoplates. Angew. Chem., Int. Ed. 2006, 45, 4608–4612.

    Article  Google Scholar 

  24. Zhou, J. D.; Zeng, Q. S.; Lv, D. H.; Sun, L. F.; Niu, L.; Fu, W.; Liu, F. C.; Shen, Z. X.; Jin, C. H.; Liu, Z. Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Lett. 2015, 15, 6400–6405.

    Article  Google Scholar 

  25. Zhou, X.; Gan, L.; Tian, W. M.; Zhang, Q.; Jin, S. Y.; Li, H. Q.; Bando, Y.; Golberg, D.; Zhai, T. Y. Ultrathin SnS2 flakes grown by chemical vapor deposition for highperformance photodetectors. Adv. Mater. 2015, 27, 8035–8041.

    Article  Google Scholar 

  26. Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Meier, F.; Dil, J. H.; Osterwalder, J.; Patthey, L.; Fedorov, A. V.; Lin, H. et al. Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. Phys. Rev. Lett. 2009, 103, 146401.

    Article  Google Scholar 

  27. Zhang, Y.; He, K.; Chang, C. Z.; Song, C. L.; Wang, L. L.; Chen, X.; Jia, J. F.; Fang, Z.; Dai, X.; Shan, W. Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.

    Article  Google Scholar 

  28. Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

    Article  Google Scholar 

  29. Su, G. X.; Hadjiev, V. G.; Loya, P. E.; Zhang, J.; Lei, S. D.; Maharjan, S.; Dong, P.; Ajayan, P. M.; Lou, J.; Peng, H. B. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett. 2015, 15, 506–513.

    Article  Google Scholar 

  30. Huang, Y.; Sutter, E.; Sadowski, J. T.; Cotlet, M.; Monti, O. L. A.; Racke, D. A.; Neupane, M. R.; Wickramaratne, D.; Lake, R. K.; Parkinson, B. A. et al. Tin disulfide—An emerging layered metal dichalcogenide semiconductor: Materials properties and device characteristics. ACS Nano 2014, 8, 10743–10755.

    Article  Google Scholar 

  31. Sun, Y. F.; Cheng, H.; Gao, S.; Sun, Z. H.; Liu, Q. H.; Liu, Q.; Lei, F. C.; Yao, T.; He, J. F.; Wei, S. Q. et al. Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Angew. Chem., Int. Ed. 2012, 51, 8727–8731.

    Article  Google Scholar 

  32. De, D.; Manongdo, J.; See, S.; Zhang, V.; Guloy, A.; Peng, H. High on/off ratio field effect transistors based on exfoliated crystalline SnS2 nano-membranes. Nanotechnology 2013, 24, 025202.

    Article  Google Scholar 

  33. Xia, J.; Zhu, D. D.; Wang, L.; Huang, B.; Huang, X.; Meng, X. M. Large-scale growth of two-dimensional SnS2 crystals driven by screw dislocations and application to photodetectors. Adv. Funct. Mater. 2015, 25, 4255–4261.

    Article  Google Scholar 

  34. Ahn, J. H.; Lee, M. J.; Heo, H.; Ji, H. S.; Kim, K.; Hwang, H.; Jo, M. H. Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano Lett. 2015, 15, 3703–3708.

    Article  Google Scholar 

  35. Weast, R. C.; Astle, M. J.; Beyer, W. H. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, 1988.

    Google Scholar 

  36. Mutlu, Z.; Wu, R. J.; Wickramaratne, D.; Shahrezaei, S.; Liu, C.; Temiz, S.; Patalano, A.; Ozkan, M.; Lake, R. K.; Mkhoyan, K. A. et al. Phase engineering of 2D tin sulfides. Small 2016, 12, 2998–3004.

    Article  Google Scholar 

  37. Park, J. C.; Lee, K. R.; Heo, H.; Kwon, S. H.; Kwon, J. D.; Lee, M. J.; Jeon, W.; Jeong, S. J.; Ahn, J. H. Vapor transport synthesis of two-dimensional SnS2 nanocrystals using a SnS2 precursor obtained from the sulfurization of SnO2. Cryst. Growth Des. 2016, 16, 3884–3889.

    Article  Google Scholar 

  38. Samad, L.; Bladow, S. M.; Ding, Q.; Zhuo, J. Q.; Jacobberger, R. M.; Arnold, M. S.; Jin, S. Layer-controlled chemical vapor deposition growth of MoS2 vertical heterostructures via van der Waals epitaxy. ACS Nano 2016, 10, 7039–7046.

    Article  Google Scholar 

  39. Zhang, X. W.; Meng, F.; Christianson, J. R.; Arroyo-Torres, C.; Lukowski, M. A.; Liang, D.; Schmidt, J. R.; Jin, S. Vertical heterostructures of layered metal chalcogenides by van der Waals epitaxy. Nano Lett. 2014, 14, 3047–3054.

    Article  Google Scholar 

  40. Wang, Q. S.; Xu, K.; Wang, Z. X.; Wang, F.; Huang, Y.; Safdar, M.; Zhan, X. Y.; Wang, F. M.; Cheng, Z. Z.; He, J. Van der Waals epitaxial ultrathin two-dimensional nonlayered semiconductor for highly efficient flexible optoelectronic devices. Nano Lett. 2015, 15, 1183–1189.

    Article  Google Scholar 

  41. Massa, W. Crystal Structure Determination; Springer: Berlin Heidelberg, 2013.

    Google Scholar 

  42. Al-Alamy, F. A. S.; Balchin, A. A. The growth by iodine vapour transport and the crystal structures of layer compounds in the series SnSxSe2-x (0 ≤ x ≤ 2), SnxZr1-xSe2 (0 ≤ x ≤ 1), and TaSxSe2-x (0 ≤ x ≤ 2). J. Cryst. Growth 1977, 38, 221–232.

    Article  Google Scholar 

  43. Smith, A. J.; Meek, P. E.; Liang, W. Y. Raman scattering studies of SnS2 and SnS2. J. Phys. C 1977, 10, 1321.

    Article  Google Scholar 

  44. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Article  Google Scholar 

  45. Lin, M.; Wu, D.; Zhou, Y.; Huang, W.; Jiang, W.; Zheng, W. S.; Zhao, S. L.; Jin, C. H.; Guo, Y. F.; Peng, H. L. et al. Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy. J. Am. Chem. Soc. 2013, 135, 13274–13277.

    Article  Google Scholar 

  46. Cha, J. J.; Kong, D. S.; Hong, S.-S.; Analytis, J. G.; Lai, K. J.; Cui, Y. Weak antilocalization in Bi2(SexTe1–x)3 nanoribbons and nanoplates. Nano Lett. 2012, 12, 1107–1111.

    Article  Google Scholar 

  47. Kong, D. S.; Dang, W. H.; Cha, J. J.; Li, H.; Meister, S.; Peng, H. L.; Liu, Z. F.; Cui, Y. Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 2010, 10, 2245–2250.

    Article  Google Scholar 

  48. Kong, D. S.; Koski, K. J.; Cha, J. J.; Hong, S. S.; Cui, Y. Ambipolar field effect in Sb-doped Bi2Se3 nanoplates by solvothermal synthesis. Nano Lett. 2013, 13, 632–636.

    Article  Google Scholar 

  49. Zhang, K. H.; Feng, S. M.; Wang, J. J.; Azcatl, A.; Lu, N.; Addou, R.; Wang, N.; Zhou, C. J.; Lerach, J.; Bojan, V. et al. Manganese doping of monolayer MoS2: The substrate is critical. Nano Lett. 2015, 15, 6586–6591.

    Article  Google Scholar 

  50. Nemes-Incze, P.; Osváth, Z.; Kamarás, K.; Biró, L. P. Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 2008, 46, 1435–1442.

    Article  Google Scholar 

  51. Ji, Q. Q.; Zhang, Y. F.; Gao, T.; Zhang, Y.; Ma, D. L.; Liu, M. X.; Chen, Y. B.; Qiao, X. F.; Tan, P.-H.; Kan, M. et al. Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 2013, 13, 3870–3877.

    Article  Google Scholar 

  52. Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.

    Article  Google Scholar 

  53. Huang, M. H.; Wu, Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 2001, 13, 113–116.

    Article  Google Scholar 

  54. Yan, A. M.; Velasco, J., Jr.; Kahn, S.; Watanabe, K.; Taniguchi, T.; Wang, F.; Crommie, M. F.; Zettl, A. Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles. Nano Lett. 2015, 15, 6324–6331.

    Article  Google Scholar 

  55. Hansen, L. P.; Johnson, E.; Brorson, M.; Helveg, S. Growth mechanism for single-and multi-layer MoS2 nanocrystals. J. Phys. Chem. C 2014, 118, 22768–22773.

    Article  Google Scholar 

  56. Markov, I. V. Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy; World Scientific Publishing Company: Singapore, 2003.

    Book  Google Scholar 

  57. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

    Article  Google Scholar 

  58. Wieting, T. J.; Verble, J. L. Interlayer bonding and the lattice vibrations of ß-GaSe. Phys. Rev. B 1972, 5, 1473–1479.

    Article  Google Scholar 

  59. Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    Article  Google Scholar 

  60. Lucovsky, G.; Mikkelsen, J. C., Jr.; Liang, W. Y.; White, R. M.; Martin, R. M. Optical phonon anisotropies in the layer crystals SnS2 and SnS2. Phys. Rev. B 1976, 14, 1663–1669.

    Article  Google Scholar 

  61. Mead, D. G.; Irwin, J. C. Raman spectra of SnS2 and SnS2. Solid State Commun. 1976, 20, 885–887.

    Article  Google Scholar 

  62. Yu, H. Y.; Feng, X. D.; Grozea, D.; Lu, Z. H.; Sodhi, R. N. S.; Hor, A. M.; Aziz, H. Surface electronic structure of plasmatreated indium tin oxides. Appl. Phys. Lett. 2001, 78, 2595–2597.

    Article  Google Scholar 

  63. Hamberg, I.; Granqvist, C. G. Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energyefficient windows. J. Appl. Phys. 1986, 60, R123–R160.

    Article  Google Scholar 

  64. Singh, R.; Rajkanan, K.; Brodie, D. E.; Morgan, J. H. Optimization of oxide-semiconductor/base-semiconductor solar cells. IEEE Trans. Electron Dev. 1980, 27, 656–662.

    Article  Google Scholar 

  65. Son, Y.; Wang, Q. H.; Paulson, J. A.; Shih, C. J.; Rajan, A. G.; Tvrdy, K.; Kim, S.; Alfeeli, B.; Braatz, R. D.; Strano, M. S. Layer number dependence of MoS2 photoconductivity using photocurrent spectral atomic force microscopic imaging. ACS Nano 2015, 9, 2843–2855.

    Article  Google Scholar 

  66. Son, Y.; Li, M. Y.; Cheng, C. C.; Wei, K. H.; Liu, P. W.; Wang, Q. H.; Li, L. J.; Strano, M. S. Observation of switchable photoresponse of a monolayer WSe2-MoS2 lateral heterostructure via photocurrent spectral atomic force microscopic imaging. Nano Lett. 2016, 16, 3571–3577.

    Article  Google Scholar 

  67. Freitag, M.; Low, T.; Xia, F. N.; Avouris, P. Photoconductivity of biased graphene. Nat. Photonics 2012, 7, 53–59.

    Article  Google Scholar 

  68. Lee, M. J.; Ahn, J. H.; Sung, J. H.; Heo, H.; Jeon, S. G.; Lee, W.; Song, J. Y.; Hong, K. H.; Choi, B.; Lee, S. H. et al. Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity. Nat. Commun. 2016, 7, 12011.

    Article  Google Scholar 

  69. Rhoderick, E. H. Metal-semiconductor contacts. IEE Proc. I: Solid-State Electron Dev. 1982, 129, 1.

    Google Scholar 

  70. Klaua, M.; Ullmann, D.; Barthel, J.; Wulfhekel, W.; Kirschner, J.; Urban, R.; Monchesky, T. L.; Enders, A.; Cochran, J. F.; Heinrich, B. Growth, structure, electronic, and magnetic properties of MgO/Fe(001) bilayers and Fe/MgO/Fe(001) trilayers. Phys. Rev. B 2001, 64, 134411.

    Article  Google Scholar 

  71. Yu, Y.; Schoonen, M. A. A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543–556.

    Article  Google Scholar 

  72. Zhang, Z.; Yates, J. T., Jr. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112, 5520–5551.

    Article  Google Scholar 

  73. Zangwill, A. Physics at Surfaces; Cambridge University Press: Cambridge, 1988.

    Book  Google Scholar 

  74. Cowley, A. M.; Sze, S. M. Surface states and barrier height of metal-semiconductor systems. J. Appl. Phys. 1965, 36, 3212–3220.

    Article  Google Scholar 

  75. Bardeen, J. Surface states and rectification at a metal semiconductor contact. Phys. Rev. 1947, 71, 717–727.

    Article  Google Scholar 

  76. Sui, Y.; Appenzeller, J. Screening and interlayer coupling in multilayer graphene field-effect transistors. Nano Lett. 2009, 9, 2973–2977.

    Article  Google Scholar 

  77. Das, S.; Chen, H.-Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

    Article  Google Scholar 

  78. Zhou, X.; Gan, L.; Tian, W. M.; Zhang, Q.; Jin, S. Y.; Li, H. Q.; Bando, Y.; Golberg, D.; Zhai, T. Y. Photodetectors: Ultrathin SnS2 flakes grown by chemical vapor deposition for high-performance photodetectors (Adv. Mater. 48/2015). Adv. Mater. 2015, 27, 8119.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Qian Yu at Zhejiang University for the help in the aspect of high-resolution TEM characterizations. This work is supported by National Basic Research Program of China (No. 2015CB659300), National Materials Genome Project (No. 2016YFB0700600), National Natural Science Foundation of China (Nos. 21403105 and 21573108), China Postdoctoral Science Foundation (Nos. 2015M580408, 2015M581775, 2015M580413 and 2015M581769), Natural Science Foundation of Jiangsu Province (Nos. BK20150571 and BK20160647), Fundamental Research Funds for the Central Universities and a project funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Jin or Jie Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Chen, T., Wang, X. et al. Controlled growth and photoconductive properties of hexagonal SnS2 nanoflakes with mesa-shaped atomic steps. Nano Res. 10, 1434–1447 (2017). https://doi.org/10.1007/s12274-017-1525-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1525-3

Keywords

Navigation