Skip to main content
Log in

Unravelling a solution-based formation of single-crystalline kinked wurtzite nanowires: The case of MnSe

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The search for a novel strategy to sculpt semiconductor nanowires (NWs) at the atomistic scale is crucial for the development of new paradigms in optics, electronics, and spintronics. Thus far, the fabrication of single-crystalline kinked semiconductor NWs has been achieved mainly through the vapor−liquid−solid growth technique. In this study, we developed a new strategy for sculpting single-crystalline kinked wurtzite (WZ) MnSe NWs by triggering the nonpolar axial-oriented growth, thereby switching—at the atomistic scale—the NW growth orientation along the nonpolar axes in a facile solution-based procedure. This presents substantial challenges owing to the dominant polar c axis growth in the solution-based synthesis of one-dimensional WZ nanocrystals. More significantly, the ability to continuously switch the nonpolar axial-growth orientation allowed us to craft the kinking landscape of types 150°, 120°, 90°, and 60°. A probabilistic analysis of kinked MnSe NWs reveals the correlations of the synergy and interplay between these two sets of nonpolar axial growth-orientation switching, which determine the actual kinked motifs. Furthermore, discriminating the side-facet structures of the kinked NWs significantly strengthened the spatially selected interaction of Au nanoparticles. We envisage that such a facile solution-based strategy can be useful for synthesizing other single-crystalline kinked WZ-type transition-metal dichalcogenide NWs to develop novel functional materials with finely tuned properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Algra, R. E.; Verheijen, M. A.; Borgström, M. T.; Feiner, L. F.; Immink, G.; van Enckevort, W. J. P.; Vlieg, E.; Bakkers, E. P. A. M. Twinning superlattices in indium phosphide nanowires. Nature 2008, 456, 369–372.

    Article  Google Scholar 

  2. Zhu, J.; Peng, H. L.; Marshall, A. F.; Barnett, D. M.; Nix, W. D.; Cui, Y. Formation of chiral branched nanowires by the eshelby twist. Nat. Nanotechnol. 2008, 3, 477–481.

    Article  Google Scholar 

  3. Xiao, G. J.; Yang, X. Y.; Zhang, X. X.; Wang, K.; Huang, X. L.; Ding, Z. H.; Ma, Y. M.; Zou, G. T.; Zou, B. A protocol to fabricate nanostructured new phase: B31-type MnS synthesized under high pressure. J. Am. Chem. Soc. 2015, 137, 10297–10303.

    Article  Google Scholar 

  4. Zhang, L.; Yang, Q. Kinetic growth of ultralong metastable zincblende MnSe nanowires catalyzed by a fast ionic conductor via a solution-solid-solid mechanism. Nano Lett. 2016, 16, 4008–4013.

    Article  Google Scholar 

  5. Tian, B. Z.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 2009, 4, 824–829.

    Article  Google Scholar 

  6. Musin, I. R.; Filler, M. A. Chemical control of semiconductor nanowire kinking and superstructure. Nano Lett. 2012, 12, 3363-3368.

    Article  Google Scholar 

  7. Wu, X. J.; Zeng, X. C. Sawtooth-like graphene nanoribbon. Nano Res. 2008, 1, 40-45.

    Article  Google Scholar 

  8. Cooley, B. J.; Clark, T. E.; Liu, B. Z.; Eichfeld, C. M.; Dickey, E. C.; Mohney, S. E.; Crooker, S. A.; Samarth, N. Growth of magneto-optically active (Zn, Mn)Se nanowires. Nano Lett. 2009, 9, 3142-3146.

    Article  Google Scholar 

  9. Sun, L. X.; Kim, D. H.; Oh, K. H.; Agarwal, R. Strain-induced large exciton energy shifts in buckled CdS nanowires. Nano Lett. 2013, 13, 3836-3842.

    Article  Google Scholar 

  10. Fu, Q.; Zhang, Z. Y.; Kou, L. Z.; Wu, P. C.; Han, X. B.; Zhu, X. L.; Gao, J. Y.; Xu, J.; Zhao, Q.; Guo, W. L. et al. Linear strain-gradient effect on the energy bandgap in bent CdS nanowires. Nano Res. 2011, 4, 308–314.

    Article  Google Scholar 

  11. Madras, P.; Dailey, E.; Drucker, J. Kinetically induced kinking of vapor-liquid-solid grown epitaxial Si nanowires. Nano Lett. 2009, 9, 3826–3830.

    Article  Google Scholar 

  12. Shen, G. Z.; Liang, B.; Wang, X. F.; Chen, P. C.; Zhou, C. W. Indium oxide nanospirals made of kinked nanowires. ACS Nano 2011, 5, 2155–2161.

    Article  Google Scholar 

  13. Li, Y. Y.; Wang, Y. M.; Ryu, S.; Marshall, A. F.; Cai, W.; McIntyre, P. C. Spontaneous, defect-free kinking via capillary instability during vapor–liquid–solid nanowire growth. Nano Lett. 2016, 16, 1713–1718.

    Article  Google Scholar 

  14. Wang, Y. H. A.; Zhang, X. Y.; Bao, N. Z.; Lin, B. P.; Gupta, A. Synthesis of shape-controlled monodisperse wurtzite CuIn x Ga1–x S2 semiconductor nanocrystals with tunable band gap. J. Am. Chem. Soc. 2011, 133, 11072–11075.

    Article  Google Scholar 

  15. Sines, I. T.; Misra, R.; Schiffer, P.; Schaak, R. E. Colloidal synthesis of non-equilibrium wurtzite-type MnSe. Angew. Chem., Int. Ed. 2010, 49, 4638–4640.

    Article  Google Scholar 

  16. Talapin, D. V.; Lee, J. S.; Kovalenko, M. V; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

    Article  Google Scholar 

  17. Zhou, B.; Yang, X. Y.; Sui, Y. M.; Xiao, G. J.; Wei, Y. J.; Zou, B. Alternative motif toward high-quality wurtzite MnSe nanorods via subtle sulfur element doping. Nanoscale 2016, 8, 8784–8790.

    Article  Google Scholar 

  18. Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382–385.

    Article  Google Scholar 

  19. Yang, X. Y.; Wang, Y. N.; Wang, K.; Sui, Y. M.; Zhang, M. G.; Li, B.; Ma, Y. M.; Liu, B. B.; Zou, G. T.; Zou, B. Polymorphism and formation mechanism of nanobipods in manganese sulfide nanocrystals induced by temperature or pressure. J. Phys. Chem. C 2012, 116, 3292–3297.

    Article  Google Scholar 

  20. Hu, J. Q.; Bando, Y.; Golberg, D. Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures. Small 2005, 1, 95–99.

    Article  Google Scholar 

  21. Zhuang, T. T.; Yu, P.; Fan, F. J.; Wu, L.; Liu, X. J.; Yu, S. H. Controlled synthesis of kinked ultrathin ZnS nanorods/ nanowires triggered by chloride ions: A case study. Small 2014, 10, 1394–1402.

    Article  Google Scholar 

  22. Zanolli, Z.; Fuchs, F.; Furthmüller, J.; von Barth, U.; Bechstedt, F. Model GWband structure of InAs and GaAs in the wurtzite phase. Phys. Rev. B 2007, 75, 245121.

    Article  Google Scholar 

  23. Rieger, T.; Rosenbach, D.; Vakulov, D.; Heedt, S.; Schäpers, T.; Grützmacher, D.; Lepsa, M. I. Crystal phase transformation in self-assembled InAs nanowire junctions on patterned Si substrates. Nano Lett. 2016, 16, 1933–1941.

    Article  Google Scholar 

  24. Fu, M. Q.; Tang, Z. Q.; Li, X.; Ning, Z. Y.; Pan, D.; Zhao, J. H.; Wei, X. L.; Chen, Q. Crystal phase- and orientationdependent electrical transport properties of InAs nanowires. Nano Lett. 2016, 16, 2478–2484.

    Article  Google Scholar 

  25. Litvinov, D.; Gerthsen, D.; Rosenauer, A.; Daniel, B.; Hetterich, M. Sphalerite–rock salt phase transition in ZnMnSe heterostructures. Appl. Phys. Lett. 2004, 85, 751–753.

    Article  Google Scholar 

  26. Heimbrodt, W.; Goede, O.; Tschentsher, I.; Weinhold, V.; Klimakow, A.; Pohl, U.; Jacobs, K.; Hoffmann, N. Optical study of octahedrally and tetrahedrally coordinated MnSe. Phys. B 1993, 185, 357–361.

    Article  Google Scholar 

  27. Peng, Q.; Dong, Y. J.; Deng, Z. X.; Kou, H. Z.; Gao, S.; Li, Y. D. Selective synthesis and magnetic properties of a-MnSe and MnSe2 uniform microcrystals. J. Phys. Chem. B 2002, 106, 9261–9265.

    Article  Google Scholar 

  28. Yang, X. Y.; Wang, Y. N.; Sui, Y. M.; Huang, X. L.; Cui, T.; Wang, C. Z.; Liu, B. B.; Zou, G. T.; Zou, B. Morphology-controlled synthesis of anisotropic wurtzite MnSe nanocrystals: Optical and magnetic properties. CrystEngComm 2012, 14, 6916-6920.

    Article  Google Scholar 

  29. Zhang, J.; Zhang, F.; Zhao, X. B.; Wang, X. R.; Yin, L. F.; Liang, C. Y.; Wang, M.; Li, Y.; Liu, J. W.; Wu, Q. S. et al. Uniform wurtzite MnSe nanocrystals with surface-dependent magnetic behavior. Nano Res. 2013, 6, 275–285.

    Article  Google Scholar 

  30. Peng, Y. K.; Ye, L.; Qu, J.; Zhang, L.; Fu, Y. Y.; Teixeira, I. F.; McPherson, I. J.; He, H. Y.; Tsang, S. C. E. Trimethylphosphine-assisted surface fingerprinting of metal oxide nanoparticle by 31P solid-state NMR: A zinc oxide case study. J. Am. Chem. Soc. 2016, 138, 2225–2234.

    Article  Google Scholar 

  31. Wang, J. L.; Chen, K. M.; Gong, M.; Xu, B.; Yang, Q. Solution–solid–solid mechanism: Superionic conductors catalyze nanowire growth. Nano Lett. 2013, 13, 3996-4000.

    Article  Google Scholar 

  32. Wang, F. D.; Buhro, W. E. Crystal-phase control by solutionsolid- solid growth of II-VI quantum wires. Nano Lett. 2016, 16, 889-894.

    Article  Google Scholar 

  33. Kirchhoff, F.; Holender, J. M.; Gillan, M. J. Structure, dynamics, and electronic structure of liquid Ag-Se alloys investigated by ab initio simulation. Phys. Rev. B 1996, 54, 190-202.

    Article  Google Scholar 

  34. Goren-Ruck, L.; Tsivion, D.; Schvartzman, M.; Popovitz- Biro, R.; Joselevich, E. Guided growth of horizontal GaN nanowires on quartz and their transfer to other substrates. ACS Nano 2014, 8, 2838–2847.

    Article  Google Scholar 

  35. Zhou, J. C.; Huang, F.; Xu, J.; Wang, Y. S. Controllable synthesis of metal selenide heterostructures mediated by Ag2Se nanocrystals acting as catalysts. Nanoscale 2013, 5, 9714–9719.

    Article  Google Scholar 

  36. Vaneski, A.; Susha, A. S.; Rodríguez-Ferná ndez, J.; Berr, M.; Jä ckel, F.; Feldmann, J.; Rogach, A. L. Hybrid colloidal heterostructures of anisotropic semiconductor nanocrystals decorated with noble metals: Synthesis and function. Adv. Funct. Mater. 2011, 21, 1547–1556.

    Article  Google Scholar 

  37. Jiang, M. W.; Liu, W.; Yang, X. L.; Jiang, Z.; Yao, T.; Wei, S. Q.; Peng, X. G. Pt/Fe3O4 core/shell triangular nanoprisms by heteroepitaxy: Facet selectivity at the Pt-Fe3O4 interface and the Fe3O4 outer surface. ACS Nano 2015, 9, 10950–10960.

    Article  Google Scholar 

  38. Xu, Y. M.; Li, Q. Heterostructured CIGS–Au nanoparticles: From Au–CIGS side-by-side structure to Au-core/CIGS-shell configuration. Nanoscale 2011, 3, 3238–3243.

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (Nos. 91227202, 21673100 and 11504126), the RFDP (No. 20120061130006), Changbai Mountain scholars program (No. 2013007), Program for Innovative Research Team (in Science and Technology) in University of Jilin Province, the China Postdoctoral Science Foundation (No. 2014M561281).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zou.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhou, B., Liu, C. et al. Unravelling a solution-based formation of single-crystalline kinked wurtzite nanowires: The case of MnSe. Nano Res. 10, 2311–2320 (2017). https://doi.org/10.1007/s12274-017-1424-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1424-7

Keywords

Navigation