Skip to main content
Log in

Transition metal–nitrogen–carbon nanostructured catalysts for the oxygen reduction reaction: From mechanistic insights to structural optimization

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Accelerating the rate-limiting oxygen reduction reaction (ORR) at the cathode remains the foremost issue for the commercialization of fuel cells. Transition metal–nitrogen–carbon (M–N/C, M = Fe, Co, etc.) nanostructures are the most promising class of non-precious metal catalysts (NPMCs) with satisfactory activities and stabilities in practical fuel cell applications. However, the long-debated nature of the active sites and the elusive structure-performance correlation impede further developments of M–N/C materials. In this review, we present recent endeavors to elucidate the actual structures of active sites by adopting a variety of physicochemical techniques that may provide a profound mechanistic understanding of M–N/C catalysts. Then, we focus on the spectacular progress in structural optimization strategies for M–N/C materials with tailored precursor architectures and modified synthetic routes for controlling the structural uniformity and maximizing the number of active sites in catalytic materials. The recognition of the right active centers and site-specific engineering of the nanostructures provides future directions for designing advantageous M–N/C catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

    Article  Google Scholar 

  2. Mahmood, A.; Guo, W. H.; Tabassum, H.; Zou, R. Q. Metalorganic framework-based nanomaterials for electrocatalysis. Adv. Energy Mater. 2016, 6, 1600423.

    Article  Google Scholar 

  3. Nie, Y.; Li, L.; Wei, Z. D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168–2201.

    Article  Google Scholar 

  4. Guo, S. J.; Zhang, S.; Sun, S. H. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 8526–8544.

    Article  Google Scholar 

  5. Bezerra, C. W. B.; Zhang, L.; Lee, K.; Liu, H. S.; Marques, A. L. B.; Marques, E. P.; Wang, H. J.; Zhang, J. J. A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochim. Acta 2008, 53, 4937–4951.

    Article  Google Scholar 

  6. Wu, G.; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 2013, 46, 1878–1889.

    Article  Google Scholar 

  7. Jasinski, R. A new fuel cell cathode catalyst. Nature 1964, 201, 1212–1213.

    Article  Google Scholar 

  8. Su, D. S.; Sun, G. Q. Nonprecious-metal catalysts for low-cost fuel cells. Angew. Chem., Int. Ed. 2011, 50, 11570–11572.

    Article  Google Scholar 

  9. Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192.

    Article  Google Scholar 

  10. Gupta, S.; Tryk, D.; Bae, I.; Aldred, W.; Yeager, E. Heattreated polyacrylonitrile-based catalysts for oxygen electroreduction, J. Appl. Electrochem. 1989, 19, 19–27.

    Article  Google Scholar 

  11. Li, Q.; Cao, R. G.; Cho, J.; Wu, G. Nanocarbon electrocatalysts for oxygen reduction in alkaline media for advanced energy conversion and storage. Adv. Energy Mater. 2014, 4, 1301415.

    Article  Google Scholar 

  12. Zhou, M.; Wang, H.-L.; Guo, S. J. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev. 2016, 45, 1273–1307.

    Article  Google Scholar 

  13. Li, W. M.; Wu, J.; Higgins, D. C.; Choi, J.-Y.; Chen, Z. W. Determination of iron active sites in pyrolyzed iron-based catalysts for the oxygen reduction reaction. ACS Catal. 2012, 2, 2761–2768.

    Article  Google Scholar 

  14. Masa, J.; Xia, W.; Muhler, M.; Schuhmann, W. On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction. Angew. Chem., Int. Ed. 2015, 54, 10102–10120.

    Article  Google Scholar 

  15. Jia, Q. Y.; Ramaswamy, N.; Tylus, U.; Strickland, K.; Li, J. K.; Serov, A.; Artyushkova, K.; Atanassov, P.; Anibal, J.; Gumeci, C. et al. Spectroscopic insights into the nature of active sites in iron–nitrogen–carbon electrocatalysts for oxygen reduction in acid. Nano Energy 2016, 29, 65–82.

    Article  Google Scholar 

  16. Li, J. K.; Ghoshal, S.; Liang, W. T.; Sougrati, M.-T.; Jaouen, F.; Halevi, B.; McKinney, S.; McCool, G.; Ma, C. R.; Yuan, X. X. et al. Structural and mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction. Energy Environ. Sci. 2016, 9, 2418–2432.

    Article  Google Scholar 

  17. Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J.-P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71–74.

    Article  Google Scholar 

  18. Jia, Q. Y.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.; Barbiellini, B.; Bansil, A.; Holby, E. F.; Zelenay, P. et al. Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 2015, 9, 12496–12505.

    Article  Google Scholar 

  19. Kramm, U. I.; Lefèvre, M.; Larouche, N.; Schmeisser, D.; Dodelet, J.-P. Correlations between mass activity and physicochemical properties of Fe/N/C catalysts for the ORR in PEM fuel cell via 57Fe Mössbauer spectroscopy and other techniques. J. Am. Chem. Soc. 2014, 136, 978–985.

    Article  Google Scholar 

  20. Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371–375.

    Article  Google Scholar 

  21. Hu, Y.; Jensen, J. O.; Zhang, W.; Cleemann, L. N.; Xing, W.; Bjerrum, N. J.; Li, Q. F. Hollow spheres of iron carbide nanoparticles encased in graphite layers as oxygen reduction catalysts. Angew. Chem., Int. Ed. 2014, 53, 3675–3679.

    Article  Google Scholar 

  22. Strickland, K.; Miner, E.; Jia, Q. Y.; Tylus, U.; Ramaswamy, N.; Liang, W. T.; Sougrati, M.-T.; Jaouen, F.; Mukerjee, S. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nat. Commun. 2015, 6, 7343–7350.

    Article  Google Scholar 

  23. Yang, W. X.; Liu, X. J.; Yue, X. Y.; Jia, J. B.; Guo, S. J. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 1436–1439.

    Article  Google Scholar 

  24. Chung, H. T.; Won, J. H.; Zelenay, P. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 2013, 4, 1922.

    Article  Google Scholar 

  25. Kobayashi, M.; Niwa, H.; Saito, M.; Harada, Y.; Oshima, M.; Ofuchi, H.; Terakura, K.; Ikeda, T.; Koshigoe, Y.; Ozaki, J.-I. et al. Indirect contribution of transition metal towards oxygen reduction reaction activity in iron phthalocyaninebased carbon catalysts for polymer electrolyte fuel cells. Electrochim. Acta 2012, 74, 254–259.

    Article  Google Scholar 

  26. Oh, H.-S.; Kim, H. The role of transition metals in nonprecious nitrogen-modified carbon-based electrocatalysts for oxygen reduction reaction. J. Power Sources 2012, 212, 220–225.

    Article  Google Scholar 

  27. Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

    Article  Google Scholar 

  28. Li, Y. G.; Zhou, W.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Wei, F.; Idrobo, J.-C.; Pennycook, S. J.; Dai, H. J. An oxygen reduction electrocatalyst based on carbon nanotubegraphene complexes. Nat. Nanotechnol. 2012, 7, 394–400.

    Article  Google Scholar 

  29. Liang, J.; Zhou, R. F.; Chen, X. M.; Tang, Y. H.; Qiao, S. Z. Fe–N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction. Adv. Mater. 2014, 26, 6074–6079.

    Article  Google Scholar 

  30. Jiang, W. J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L. J.; Wang, J. Q.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–Nx. J. Am. Chem. Soc. 2016, 138, 3570–3578.

    Article  Google Scholar 

  31. Zhou, M.; Yang, C. Z.; Chan, K.-Y. Structuring porous iron-nitrogen-doped carbon in a core/shell geometry for the oxygen reduction reaction. Adv. Energy Mater. 2014, 4, 1400840.

    Article  Google Scholar 

  32. Serov, A.; Artyushkova, K.; Atanassov, P. Fe-N-C oxygen reduction fuel cell catalyst derived from carbendazim: Synthesis, structure, and reactivity. Adv. Energy Mater. 2014, 4, 1301735.

    Article  Google Scholar 

  33. Palaniselvam, T.; Kashyap, V.; Bhange, S. N.; Baek, J.-B.; Kurungot, S. Nanoporous graphene enriched with Fe/Co-N active sites as a promising oxygen reduction electrocatalyst for anion exchange membrane fuel cells. Adv. Funct. Mater. 2016, 26, 2150–2162.

    Article  Google Scholar 

  34. Lin, L.; Zhu, Q.; Xu, A. W. Noble-metal-free Fe–N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 2014, 136, 11027–11033.

    Article  Google Scholar 

  35. Kramm, U. I.; Herrmann-Geppert, I.; Behrends, J.; Lips, K.; Fiechter, S.; Bogdanoff, P. On an easy way to prepare metal–nitrogen doped carbon with exclusive presence of MeN4-type sites active for the ORR. J. Am. Chem. Soc. 2016, 138, 635- 640.

    Article  Google Scholar 

  36. Shen, M. X.; Ruan, C. P.; Chen, Y.; Jiang, C. H.; Ai, K. L.; Lu, L. H. Covalent entrapment of cobalt–iron sulfides in N-doped mesoporous carbon: Extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces 2015, 7, 1207–1218.

    Article  Google Scholar 

  37. Ma, S. Q.; Goenaga, G. A.; Call, A. V.; Liu, D.-J. Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts. Chem.—Eur. J. 2011, 17, 2063–2067.

    Article  Google Scholar 

  38. Shui, J.-L.; Karan, N. K.; Balasubramanian, M.; Li, S.-Y.; Liu, D.-J. Fe/N/C composite in Li-O2 battery: Studies of catalytic structure and activity toward oxygen evolution reaction. J. Am. Chem. Soc. 2012, 134, 16654–16661.

    Article  Google Scholar 

  39. Zhu, Y. S.; Zhang, B. S.; Liu, X.; Wang, D.-W.; Su, D. S. Unravelling the structure of electrocatalytically active Fe–N complexes in carbon for oxygen reduction reaction. Angew. Chem., Int. Ed. 2014, 53, 10673–10677.

    Article  Google Scholar 

  40. Kramm, U. I.; Herranz, J.; Larouche, N.; Arruda, T. M.; Lefè vre, M.; Jaouen, F.; Bogdanoff, P.; Fiechter, S.; Abs- Wurmbach, I.; Mukerjee, S. et al. Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells. Phys. Chem. Chem. Phys. 2012, 14, 11673–11688.

    Article  Google Scholar 

  41. Calle-Vallejo, F.; Martí nez, J. I.; Rossmeisl, J. Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions. Phys. Chem. Chem. Phys. 2011, 13, 15639–15643.

    Article  Google Scholar 

  42. Ramaswamy, N.; Tylus, U.; Jia, Q. Y.; Mukerjee, S. Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: Linking surface science to coordination chemistry. J. Am. Chem. Soc. 2013, 135, 15443–15449.

    Article  Google Scholar 

  43. Fan, X. J.; Peng, Z. W.; Ye, R. Q.; Zhou, H. Q.; Guo, X. M3C (M: Fe, Co, Ni) nanocrystals encased in graphene nanoribbons: An active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. ACS Nano 2015, 9, 7407–7418.

    Article  Google Scholar 

  44. Zhang, Y.; Jiang, W. J.; Guo, L.; Zhang, X.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Confining iron carbide nanocrystals inside CNx@CNT toward an efficient electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2015, 7, 11508–11515.

    Article  Google Scholar 

  45. Masa, J.; Xia, W.; Sinev, I.; Zhao, A. Q.; Sun, Z. Y.; Grü tzke, S.; Weide, P.; Muhler, M.; Schuhmann, W. MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes. Angew. Chem., Int. Ed. 2014, 53, 8508–8512.

    Article  Google Scholar 

  46. Liu, L.; Yang, X. F.; Ma, N.; Liu, H. T.; Xia, Y. Z.; Chen, C. M.; Yang, D. J.; Yao, X. D. Scalable and cost-effective synthesis of highly efficient Fe2N-based oxygen reduction catalyst derived from seaweed biomass. Small 2016, 12, 1295–1301.

    Article  Google Scholar 

  47. Wang, L.; Yin, J.; Zhao, L.; Tian, C. G.; Yu, P.; Wang, J. Q.; Fu, H. G. Ion-exchanged route synthesis of Fe2N–N-doped graphitic nanocarbons composite as advanced oxygen reduction electrocatalyst. Chem. Commun. 2013, 49, 3022–3024.

    Article  Google Scholar 

  48. Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Highperformance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

    Article  Google Scholar 

  49. Pan, X. L.; Bao, X. H. The effects of confinement inside carbon nanotubes on catalysis. Acc. Chem. Res. 2011, 44, 553–562.

    Article  Google Scholar 

  50. Deng, J.; Yu, L.; Deng, D. H.; Chen, X. Q.; Yang, F.; Bao, X. H. Highly active reduction of oxygen on a FeCo alloy catalyst encapsulated in pod-like carbon nanotubes with fewer walls. J. Mater. Chem. A 2013, 1, 14868–14873.

    Article  Google Scholar 

  51. Lim, K. H.; Kim, H. Nitrogen-doped carbon catalysts derived from ionic liquids in the presence of transition metals for the oxygen reduction reaction. Appl. Catal. B: Environ. 2014, 158–159, 355–360.

    Article  Google Scholar 

  52. Matter, P. H.; Wang, E.; Millet, J.-M. M.; Ozkan, U. S. Characterization of the iron phase in CNx-based oxygen reduction reaction catalysts. J. Phys. Chem. C 2007, 111, 1444–1450.

    Article  Google Scholar 

  53. Liu, G.; Li, X. G.; Ganesan, P.; Popov, B. N. Studies of oxygen reduction reaction active sites and stability of nitrogenmodified carbon composite catalysts for PEM fuel cells. Electrochim. Acta 2010, 55, 2853–2858.

    Article  Google Scholar 

  54. Maldonado, S.; Stevenson, K. J. Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J. Phys. Chem. B 2005, 109, 4707–4716.

    Article  Google Scholar 

  55. Maldonado, S.; Stevenson, K. J. Direct preparation of carbon nanofiber electrodes via pyrolysis of iron(II) phthalocyanine: Electrocatalytic aspects for oxygen reduction. J. Phys. Chem. B 2004, 108, 11375–11383.

    Article  Google Scholar 

  56. Matter, P. H.; Zhang, L.; Ozkan, U. S. The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J. Catal. 2006, 239, 83–96.

    Article  Google Scholar 

  57. Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

    Article  Google Scholar 

  58. Saidi, W. A. Oxygen reduction electrocatalysis using Ndoped graphene quantum-dots. J. Phys. Chem. Lett. 2013, 4, 4160–4165.

    Article  Google Scholar 

  59. Lai, L. F.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C. H.; Gong, H.; Shen, Z. X.; Lin, J. Y.; Ruoff, R. S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 2012, 5, 7936–7942.

    Article  Google Scholar 

  60. He, W. H.; Jiang, C. H.; Wang, J. B.; Lu, L. H. High-rate oxygen electroreduction over graphitic-N species exposed on 3D hierarchically porous nitrogen-doped carbons. Angew. Chem., Int. Ed. 2014, 53, 9503–9507.

    Article  Google Scholar 

  61. Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H.-J.; Baek, J.-B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.

    Article  Google Scholar 

  62. Wang, L.; Ambrosi, A.; Pumera, M. “Metal-free” catalytic oxygen reduction reaction on heteroatom-doped graphene is caused by trace metal impurities. Angew. Chem., Int. Ed. 2013, 52, 13818–13821.

    Google Scholar 

  63. Liu, J.; Sun, X. J.; Song, P.; Zhang, Y. W.; Xing, W.; Xu, W. L. High-performance oxygen reduction electrocatalysts based on cheap carbon black, nitrogen, and trace iron. Adv. Mater. 2013, 25, 6879–6883.

    Article  Google Scholar 

  64. Niu, W. H.; Li, L. G.; Liu, X. J.; Wang, N.; Liu, J.; Zhou, W. J.; Tang, Z. H.; Chen, S. W. Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: An efficient electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 5555–5562.

    Article  Google Scholar 

  65. Jiang, Y. Y.; Lu, Y. Z.; Lv, X. Y.; Han, D. X.; Zhang, Q. X.; Niu, L.; Chen, W. Enhanced catalytic performance of Pt-free iron phthalocyanine by graphene support for efficient oxygen reduction reaction. ACS Catal. 2013, 3, 1263–1271.

    Article  Google Scholar 

  66. Hijazi, I.; Bourgeteau, T.; Cornut, R.; Morozan, A.; Filoramo, A.; Leroy, J.; Derycke, V.; Jousselme, B.; Campidelli, S. Carbon nanotube-templated synthesis of covalent porphyrin network for oxygen reduction reaction. J. Am. Chem. Soc. 2014, 136, 6348–6354.

    Article  Google Scholar 

  67. Tang, H. J.; Yin, H. J.; Wang, J. Y.; Yang, N. L.; Wang, D.; Tang, Z. Y. Molecular architecture of cobalt porphyrin multilayers on reduced graphene oxide sheets for highperformance oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 5585–5589.

    Article  Google Scholar 

  68. Wang, B. Recent development of non-platinum catalysts for oxygen reduction reaction. J. Power Sources 2005, 152, 1–15.

    Article  Google Scholar 

  69. Cao, R. G.; Thapa, R.; Kim, H.; Xu, X. D.; Kim, M. G.; Li, Q.; Park, N.; Liu, M. L.; Cho, J. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 2013, 4, 2076.

    Google Scholar 

  70. Wei, P. J.; Yu, G. Q.; Naruta, Y.; Liu, J. G. Covalent grafting of carbon nanotubes with a biomimetic heme model compound to enhance oxygen reduction reactions. Angew. Chem., Int. Ed. 2014, 53, 6659–6663.

    Article  Google Scholar 

  71. Gentil, S.; Serre, D.; Philouze, C.; Holzinger, M.; Thomas, F.; Le Goff, A. Electrocatalytic O2 reduction at a bio-inspired mononuclear copper phenolato complex immobilized on a carbon nanotube electrode. Angew. Chem., Int. Ed. 2016, 55, 2517–2520.

    Article  Google Scholar 

  72. Levy, N.; Mahammed, A.; Kosa, M.; Major, D. T.; Gross, Z.; Elbaz, L. Metallocorroles as nonprecious-metal catalysts for oxygen reduction. Angew. Chem., Int. Ed. 2015, 54, 14080–14084.

    Article  Google Scholar 

  73. Wu, Z.-S.; Chen, L.; Liu, J. Z.; Parvez, K.; Liang, H. W.; Shu, J.; Sachdev, H.; Graf, R.; Feng, X. L.; Mü llen, K. Highperformance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers. Adv. Mater. 2014, 26, 1450–1455.

    Article  Google Scholar 

  74. Cheon, J. Y.; Kim, T.; Choi, Y.; Jeong, H. Y.; Kim, M. G.; Sa, Y. J.; Kim, J.; Lee, Z.; Yang, T.-H.; Kwon, K. et al. Ordered mesoporous porphyrinic carbons with very high electrocatalytic activity for the oxygen reduction reaction. Sci. Rep. 2013, 3, 2715.

    Article  Google Scholar 

  75. Cheon, J. Y.; Kim, K.; Sa, Y. J.; Sahgong, S. H.; Hong, Y.; Woo, J.; Yim, S.-D.; Jeong, H. Y.; Kim, Y.; Joo, S. H. Graphitic nanoshell/mesoporous carbon nanohybrids as highly efficient and stable bifunctional oxygen electrocatalysts for rechargeable aqueous Na-air batteries. Adv. Energy Mater. 2016, 6, 1501794.

    Article  Google Scholar 

  76. Xiang, Z. H.; Xue, Y. H.; Cao, D. P.; Huang, L.; Chen, J.-F.; Dai, L. M. Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals. Angew. Chem., Int. Ed. 2014, 53, 2433–2437.

    Article  Google Scholar 

  77. Lin, Q. P.; Bu, X. H.; Kong, A. G.; Mao, C. Y.; Bu, F.; Feng, P. Y. Heterometal-embedded organic conjugate frameworks from alternating monomeric iron and cobalt metalloporphyrins and their application in design of porous carbon catalysts. Adv. Mater. 2015, 27, 3431–3436.

    Article  Google Scholar 

  78. Sun, J.-K.; Xu, Q. Functional materials derived from open framework templates/precursors: Synthesis and applications. Energy Environ. Sci. 2014, 7, 2071–2100.

    Article  Google Scholar 

  79. Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837–1866.

    Article  Google Scholar 

  80. Jahan, M.; Bao, Q. L.; Loh, K. P. Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 6707–6713.

    Article  Google Scholar 

  81. Jahan, M.; Liu, Z. L.; Loh, K. P. A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater. 2013, 23, 5363–5372.

    Article  Google Scholar 

  82. Zhao, D.; Shui, J.-L.; Chen, C.; Chen, X. Q.; Reprogle, B. M.; Wang, D. P.; Liu, D.-J. Iron imidazolate framework as precursor for electrocatalysts in polymer electrolyte membrane fuel cells. Chem. Sci. 2012, 3, 3200–3205.

    Article  Google Scholar 

  83. Hou, Y.; Huang, T. Z.; Wen, Z. H.; Mao, S.; Cui, S. M.; Chen, J. H. Metal organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions. Adv. Energy Mater. 2014, 4, 1400337.

    Article  Google Scholar 

  84. Zeng, M.; Liu, Y. L.; Zhao, F. P.; Nie, K. Q.; Han, N.; Wang, X. X.; Huang, W. J.; Song, X. N.; Zhong, J.; Li, Y. G. Metallic cobalt nanoparticles encapsulated in nitrogen-enriched graphene shells: Its bifunctional electrocatalysis and application in zinc–air batteries. Adv. Funct. Mater. 2016, 26, 4397–4404.

    Article  Google Scholar 

  85. Hou, Y.; Wen, Z. H.; Cui, S. M.; Ci, S. Q.; Mao, S.; Chen, J. H. An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv. Funct. Mater. 2015, 25, 872–882.

    Article  Google Scholar 

  86. Proietti, E.; Jaouen, F.; Lefè vre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J.-P. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2011, 2, 416–424.

    Article  Google Scholar 

  87. Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660–12668.

    Article  Google Scholar 

  88. Li, Q.; Xu, P.; Gao, W.; Ma, S. G.; Zhang, G. Q.; Cao, R. G.; Cho, J.; Wang, H.-L.; Wu, G. Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li–O2 batteries. Adv. Mater. 2014, 26, 1378–1386.

    Article  Google Scholar 

  89. Zhu, Q. L.; Xia, W.; Akita, T.; Zou, R. Q.; Xu, Q. Metalorganic framework-derived honeycomb-like open porous nanostructures as precious-metal-free catalysts for highly efficient oxygen electroreduction. Adv. Mater. 2016, 28, 6391–6398.

    Article  Google Scholar 

  90. Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Ed. 2016, 55, 2650–2676.

    Article  Google Scholar 

  91. Xia, W.; Zou, R. Q.; Li, A.; Xia, D. G.; Guo, S. J. A metal–organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 2015, 8, 568–576.

    Article  Google Scholar 

  92. Xia, W.; Zhu, J. H.; Guo, W. H.; An, L.; Xia, D. G.; Zou, R. Q. Well-defined carbon polyhedrons prepared from nano metal–organic frameworks for oxygen reduction. J. Mater. Chem. A 2014, 2, 11606–11613.

    Article  Google Scholar 

  93. Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.

    Article  Google Scholar 

  94. Li, Z. H.; Shao, M. F.; Zhou, L.; Zhang, R. K.; Zhang, C.; Wei, M.; Evans, D. G.; Duan, X. Directed growth of metalorganic frameworks and their derived carbon-based network for efficient electrocatalytic oxygen reduction. Adv. Mater. 2016, 28, 2337–2344.

    Article  Google Scholar 

  95. Zhong, H. X.; Wang, J.; Zhang, Y. W.; Xu, W. L.; Xing, W.; Xu, D.; Zhang, Y. F.; Zhang, X. B. ZIF-8 derived graphenebased nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 14235–14239.

    Article  Google Scholar 

  96. Zhang, W.; Wu, Z. Y.; Jiang, H. L.; Yu, S. H. Nanowiredirected templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 2014, 136, 14385–14388.

    Article  Google Scholar 

  97. Wei, J.; Hu, Y. X.; Wu, Z. X.; Liang, Y.; Leong, S.; Kong, B.; Zhang, X. Y.; Zhao, D. Y.; Simon, G. P.; Wang, H. T. A graphene-directed assembly route to hierarchically porous Co–Nx/C catalysts for high-performance oxygen reduction. J. Mater. Chem. A 2015, 3, 16867–16873.

    Article  Google Scholar 

  98. Shang, L.; Yu, H. J.; Huang, X.; Bian, T.; Shi, R.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. R. Well-dispersed ZIF-derived Co,N-co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv. Mater. 2016, 28, 1668–1674.

    Article  Google Scholar 

  99. Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

    Article  Google Scholar 

  100. Wen, Z. H.; Ci, S. Q.; Hou, Y.; Chen, J. H. Facile one-pot, one-step synthesis of a carbon nanoarchitecture for an advanced multifunctonal electrocatalyst. Angew. Chem., Int. Ed. 2014, 53, 6496–6500.

    Article  Google Scholar 

  101. Wen, Z. H.; Ci, S. Q.; Zhang, F.; Feng, X. L.; Cui, S. M.; Mao, S.; Luo, S. L.; He, Z.; Chen, J. H. Nitrogen-enriched core–shell structured Fe/Fe3C-C nanorods as advanced electrocatalysts for oxygen reduction reaction. Adv. Mater. 2012, 24, 1399–1404.

    Article  Google Scholar 

  102. Lee, J.-S.; Park, G. S.; Kim, S. T.; Liu, M. L.; Cho, J. A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3Cfunctionalized melamine foam. Angew. Chem., Int. Ed. 2013, 52, 1026–1030.

    Article  Google Scholar 

  103. Choi, J.-Y.; Hsu, R. S.; Chen, Z. W. Highly active porous carbon-supported nonprecious metal-N electrocatalyst for oxygen reduction reaction in PEM fuel cells. J. Phys. Chem. C 2010, 114, 8048–8053.

    Article  Google Scholar 

  104. Shen, M. X.; Zheng, L.-R.; He, W. H.; Ruan, C. P.; Jiang, C. H.; Ai, K. L.; Lu, L. H. High-performance oxygen reduction electrocatalysts derived from uniform cobalt–adenine assemblies. Nano Energy 2015, 17, 120–130.

    Article  Google Scholar 

  105. Bashyam, R.; Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature 2006, 443, 63–66.

    Article  Google Scholar 

  106. Ai, K. L.; Liu, Y. L.; Ruan, C. P.; Lu, L. H.; Lu, G. Q. sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: A versatile platform for highly efficient oxygen-reduction catalysts. Adv. Mater. 2013, 25, 998–1003.

    Article  Google Scholar 

  107. He, W. H.; Wang, Y.; Jiang, C. H.; Lu, L. H. Structural effects of a carbon matrix in non-precious metal O2-reduction electrocatalysts. Chem. Soc. Rev. 2016, 45, 2396–2409.

    Article  Google Scholar 

  108. Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M.-T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogendoped graphene materials. Nat. Mater. 2015, 14, 937–942.

    Article  Google Scholar 

  109. Zhang, G. X.; Chenitz, R.; Lefè vre, M.; Sun, S. H.; Dodelet, J.-P. Is iron involved in the lack of stability of Fe/N/C electrocatalysts used to reduce oxygen at the cathode of PEM fuel cells? Nano Energy 2016, 29, 111–125.

  110. Jaouen, F.; Proietti, E.; Lefè vre, M.; Chenitz, R.; Dodelet, J.-P.; Wu, G.; Chung, H. T.; Johnston, C. M.; Zelenay, P. Recent advances in non-precious metal catalysis for oxygenreduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 2011, 4, 114–130.

    Article  Google Scholar 

  111. Meng, H.; Larouche, N.; Lefè vre, M.; Jaouen, F.; Stansfield, B.; Dodelet, J.-P. Iron porphyrin-based cathode catalysts for polymer electrolyte membrane fuel cells: Effect of NH3 and Ar mixtures as pyrolysis gases on catalytic activity and stability. Electrochim. Acta 2010, 55, 6450–6461.

    Article  Google Scholar 

  112. Cao, T.; Wang, D. S.; Zhang, J. T.; Cao, C. B.; Li, Y. D. Bamboo-like nitrogen-doped carbon nanotubes with Co nanoparticles encapsulated at the tips: Uniform and largescale synthesis and high-performance electrocatalysts for oxygen reduction. Chem.—Eur. J. 2015, 21, 14022–14029.

    Article  Google Scholar 

  113. Zhong, G. Y.; Wang, H. J.; Yu, H.; Peng, F. Nitrogen doped carbon nanotubes with encapsulated ferric carbide as excellent electrocatalyst for oxygen reduction reaction in acid and alkaline media. J. Power Sources 2015, 286, 495–503.

    Article  Google Scholar 

  114. Wang, Z. L.; Xu. D.; Xu, J. J.; Zhang, X. B. Oxygen electrocatalysts in metal–air batteries: From aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 2014, 43, 7746–7786.

    Article  Google Scholar 

  115. Chen, X.; Sun, S. R.; Wang, X. Y.; Li, F.; Xia, D. G. DFT study of polyaniline and metal composites as nonprecious metal catalysts for oxygen reduction in fuel cells. J. Phys. Chem. C 2012, 116, 22737–22742.

    Article  Google Scholar 

  116. Liang, H.-W.; Wei, W.; Wu, Z.-S.; Feng, X. L.; Müllen, K. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 16002–16005.

    Article  Google Scholar 

  117. Wu, Z. Y.; Xu, X. X.; Hu, B. C.; Liang, H. W.; Lin, Y.; Chen, L. F.; Yu, S. H. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem., Int. Ed. 2015, 54, 8179–8183.

    Article  Google Scholar 

  118. Zhu, C. Z.; Li, H.; Fu, S. F.; Du, D.; Lin, Y. H. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 2016, 45, 517–531.

    Article  Google Scholar 

  119. Sun, M. H.; Huang, S. Z.; Chen, L. H.; Li, Y.; Yang, X. Y.; Yuan, Z. Y.; Su, B. L. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 2016, 45, 3479–3563.

    Article  Google Scholar 

  120. Chen, S.; Bi, J. Y.; Zhao, Y.; Yang, L. J.; Zhang, C.; Ma, Y. W.; Wu, Q.; Wang, X. Z.; Hu, Z. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 2012, 24, 5593–5597.

    Article  Google Scholar 

  121. Cui, X. Y.; Yang, S. B.; Yan, X. X.; Leng, J. G.; Shuang, S.; Ajayan, P. M.; Zhang, Z. J. Pyridinic-nitrogen-dominated graphene aerogels with Fe–N–C coordination for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 2016, 26, 5708–5717.

    Article  Google Scholar 

  122. Yang, G.; Choi, W.; Pu, X.; Yu, C. Scalable synthesis of bi-functional high-performance carbon nanotube sponge catalysts and electrodes with optimum C-N-Fe coordination for oxygen reduction reaction. Energy Environ. Sci. 2015, 8, 1799–1807.

    Article  Google Scholar 

  123. Liang, H. W.; Wu, Z. Y.; Chen, L. F.; Li, C.; Yu, S. H. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 2015, 11, 366–376.

    Article  Google Scholar 

  124. Zhao, Y. L. Bottom-up construction of highly ordered mesoporous graphene frameworks. Sci. Bull. 2015, 60, 1962–1963.

    Article  Google Scholar 

  125. Ma, N.; Jia, Y.; Yang, X. F.; She, X. L.; Zhang, L. Z.; Peng, Z.; Yao, X. D.; Yang, D. J. Seaweed biomass derived (Ni,Co)/CNT nanoaerogels: Efficient bifunctional electrocatalysts for oxygen evolution and reduction reactions. J. Mater. Chem. A 2016, 4, 6376–6384.

    Article  Google Scholar 

  126. Shui, J. L.; Chen, C.; Grabstanowicz, L.; Zhao, D.; Liu, D.-J. Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network. Proc. Natl. Acad. Sci. USA 2015, 112, 10629–10634.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by National Natural Science Foundation of China (No. 21635007) and National Key Research and Development Program of China (No. 2016YFA0203200) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lehui Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, M., Wei, C., Ai, K. et al. Transition metal–nitrogen–carbon nanostructured catalysts for the oxygen reduction reaction: From mechanistic insights to structural optimization. Nano Res. 10, 1449–1470 (2017). https://doi.org/10.1007/s12274-016-1400-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1400-7

Keywords

Navigation