Skip to main content
Log in

Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Controlling the properties of piezoelectric thin films is a key aspect for designing highly efficient flexible electromechanical devices. In this study, the crystallographic phenomena of PbZr1–x Ti x O3 (PZT) thin films caused by distinguished interfacial effects are deeply investigated by overlooking views, including not only an experimental demonstration but also ab initio modeling. The polymorphic phase balance and crystallinity, as well as the crystal orientation of PZT thin films at the morphotropic phase boundary (MPB), can be stably modulated using interfacial crystal structures. Here, interactions with MgO stabilize the PZT crystallographic system well and induce the texturing influences, while the PZT film remains quasi-stable on a conventional Al2O3 wafer. On the basis of this fundamental understanding, a high-output flexible energy harvester is developed using the controlled-PZT system, which shows significantly higher performance than the unmodified PZT generator. The voltage, current, and power densities are improved by 556%, 503%, and 822%, respectively, in comparison with the previous flexional single-crystalline piezoelectric device. Finally, the improved flexible generator is applied to harvest tiny vibrational energy from a real traffic system, and it is used to operate a commercial electronic unit. These results clearly indicate that atomic-scale designs can produce significant impacts on macroscopic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hinchet, R.; Kim, S. W. Wearable and implantable mechanical energy harvesters for self-powered biomedical systems. ACS Nano 2015, 9, 7742–7745.

    Article  Google Scholar 

  2. Wang, X. D. Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale. Nano Energy 2012, 1, 13–24.

    Article  Google Scholar 

  3. Larcher, L.; Roy, S.; Mallick, D.; Podder, P.; de Vittorio, M.; Todaro, T.; Guido, F.; Bertacchini, A.; Hinchet, R.; Keraudy, J. et al. Vibrational energy harvesting. In Beyond-CMOS Nanodevices 1; Balestra, F., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014.

  4. Wang, Z. L. Energy harvesting for self-powered nanosystems. Nano Res. 2008, 1, 1–8.

    Article  Google Scholar 

  5. Hwang, G.-T.; Byun, M.; Jeong, C. K.; Lee, K. J. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications. Adv. Healthcare Mater. 2015, 4, 646–658.

    Article  Google Scholar 

  6. Dagdeviren, C.; Shi, Y.; Joe, P.; Ghaffari, R.; Balooch, G.; Usgaonkar, K.; Gur, O.; Tran, P. L.; Crosby, J. R.; Meyer, M. et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 2015, 14, 728–736.

    Article  Google Scholar 

  7. Park, K. I.; Son, J. H.; Hwang, G. T.; Jeong, C. K.; Ryu, J.; Koo, M.; Choi, I.; Lee, S. H.; Byun, M.; Wang, Z. L. et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 2014, 26, 2514–2520.

    Article  Google Scholar 

  8. Jeong, C. K.; Park, K.-I.; Son, J. H.; Hwang, G.-T.; Lee, S. H.; Park, D. Y.; Lee, H. E.; Lee, H. K.; Byun, M.; Lee, K. J. Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy Environ. Sci. 2014, 7, 4035–4043.

    Article  Google Scholar 

  9. Hwang, G. T.; Park, H.; Lee, J. H.; Oh, S.; Park, K. I.; Byun, M.; Park, H.; Ahn, G.; Jeong, C. K.; No, K. et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 2014, 26, 4880–4887.

    Article  Google Scholar 

  10. Hwang, G.-T.; Yang, J.; Yang, S. H.; Lee, H.-Y.; Lee, M.; Park, D. Y.; Han, J. H.; Lee, S. J.; Jeong, C. K.; Kim, J. et al. A reconfigurable rectified flexible energy harvester via solid-state single crystal grown PMN-PZT. Adv. Energy Mater. 2015, 5, 1500051.

    Article  Google Scholar 

  11. Hwang, G.-T.; Kim, Y.; Lee, J.-H.; Oh, S.; Jeong, C. K.; Park, D. Y.; Ryu, J.; Kwon, H.; Lee, S.-G.; Joung, B. et al. Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energy Environ. Sci. 2015, 8, 2677–2684.

    Article  Google Scholar 

  12. Jeong, C. K.; Lee, J.; Han, S.; Ryu, J.; Hwang, G.-T.; Park, D. Y.; Park, J. H.; Lee, S. S.; Byun, M.; Ko, S. H. et al. A hyper-stretchable elastic-composite energy harvester. Adv. Mater. 2015, 27, 2866–2875.

    Article  Google Scholar 

  13. Baek, S. H.; Park, J.; Kim, D. M.; Aksyuk, V. A.; Das, R. R.; Bu, S. D.; Felker, D. A.; Lettieri, J.; Vaithyanathan, V.; Bharadwaja, S. S. N. et al. Giant piezoelectricity on si for hyperactive MEMS. Science 2011, 334, 958–961.

    Article  Google Scholar 

  14. Lee, H. J.; Zhang, S. J.; Luo, J.; Li, F.; Shrout, T. R. Thickness-dependent properties of relaxor-PbTiO3 ferroelectrics for ultrasonic transducers. Adv. Funct. Mater. 2010, 20, 3154–3162.

    Article  Google Scholar 

  15. Kang, S.-J. L.; Park, J.-H.; Ko, S.-Y.; Lee, H.-Y. Solid-state conversion of single crystals: The principle and the stateof-the-art. J. Am. Ceram. Soc. 2015, 98, 347–360.

    Article  Google Scholar 

  16. Du, X. H.; Zheng, J. H.; Belegundu, U.; Uchino, K. Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary. Appl. Phys. Lett. 1998, 72, 2421–2423.

    Article  Google Scholar 

  17. Taylor, D. V.; Damjanovic, D. Piezoelectric properties of rhombohedral Pb(Zr, Ti)O3 thin films with (100), (111), and “random” crystallographic orientation. Appl. Phys. Lett. 2000, 76, 1615–1617.

    Article  Google Scholar 

  18. Park, C.-S.; Kim, S.-W.; Park, G.-T.; Choi, J.-J.; Kim, H.-E. Orientation control of lead zirconate titanate film by combination of sol-gel and sputtering deposition. J. Mater. Res. 2005, 20, 243–246.

    Article  Google Scholar 

  19. Qi, Y.; Jafferis, N. T.; Lyons, K.; Lee, C. M.; Ahmad, H.; McAlpine, M. C. Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett. 2010, 10, 524–525.

    Article  Google Scholar 

  20. Brooks, K. G.; Reaney, I. M.; Klissurska, R.; Huang, Y.; Bursill, L.; Setter, N. Orientation of rapid thermally annealed lead zirconate titanate thin films on (111) Pt substrates. J. Mater. Res. 1994, 9, 2540–2553.

    Article  Google Scholar 

  21. Kalpat, S.; Uchino, K. Highly oriented lead zirconium titanate thin films: Growth, control of texture, and its effect on dielectric properties. J. Appl. Phys. 2001, 90, 2703–2710.

    Article  Google Scholar 

  22. Qin, H. X.; Zhu, J. S.; Jin, Z. Q.; Wang, Y. PZT thin films with preferred-orientation induced by external stress. Thin Solid Films 2000, 379, 72–75.

    Article  Google Scholar 

  23. Cattan, E.; Velu, G.; Jaber, B.; Remiens, D.; Thierry, B. Structure control of Pb(Zr, Ti)O3 films using PbTiO3 buffer layers produced by magnetron sputtering. Appl. Phys. Lett. 1997, 70, 1718–1720.

    Article  Google Scholar 

  24. Park, C.-H.; Son, Y.-G.; Won, M.-S. Microstructure and ferroelectric properties of r. f. magnetron sputtering derived PZT thin films deposited on interlayer (PbO/TiO2). Microchem. J. 2005, 80, 201–206.

    Article  Google Scholar 

  25. Yeager, C. B.; Trolier-McKinstry, S. Epitaxial Pb(Zrx, Ti1-x )O3 (0.30 = x = 0.63) films on (100)MgO substrates for energy harvesting applications. J. Appl. Phys. 2012, 112, 074107.

    Article  Google Scholar 

  26. Budd, K. D.; Dey, S. Y.; Payne, D. A. Sol-gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films. Br. Ceram. Proc. 1985, 36, 107–121.

    Google Scholar 

  27. Chen, S.-Y.; Chen, I.-W. Texture development, microstructure evolution, and crystallization of chemically derived PZT thin films. J. Am. Ceram. Soc. 2005, 81, 97–105.

    Article  Google Scholar 

  28. Kresse, G.; Furthmü ller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  29. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  30. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  31. Monkhorst, H. J.; Pack, J. D. Special points for brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  32. Batirev, I. G.; Alavi, A.; Finnis, M. W. Equilibrium and adhesion of Nb/sapphire: The effect of oxygen partial pressure. Phys. Rev. B 2000, 62, 4698–4706.

    Article  Google Scholar 

  33. Liu, L. M.; Wang, S. Q.; Ye, H. Q. First-principles study of polar Al/TiN(111) interfaces. Acta Mater. 2004, 52, 3681–3688.

    Article  Google Scholar 

  34. Damjanovic, D. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J. Am. Ceram. Soc. 2005, 88, 2663–2676.

    Article  Google Scholar 

  35. Ibrahim, A.-B. M. A.; Murgan, R.; Abd Rahman, M. K.; Osman, J. Morphotropic phase boundary in ferroelectric materials. In Ferroelectrics -Physical Effects; Lallart, M., Ed.; InTech: Rijeka, Croatia, 2011.

  36. Takayama, R.; Tomita, Y. Preparation of epitaxial Pb(ZrxTi1-x)O3 thin films and their crystallographic, pyroelectric, and ferroelectric properties. J. Appl. Phys. 1989, 65, 1666–1670.

    Article  Google Scholar 

  37. Adachi, M.; Matsuzaki, T.; Yamada, T.; Shiosaki, T.; Kawabata, A. Sputter-deposition of[111]-axis oriented rhombohedral PZT films and their dielectric, ferroelectric and pyroelectric properties. Jpn. J. Appl. Phys. 1987, 26, 550–553.

    Article  Google Scholar 

  38. Morimoto, K.; Kanno, I.; Wasa, K.; Kotera, H. Highefficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers. Sensor. Actuat. A Phys. 2010, 163, 428–432.

    Article  Google Scholar 

  39. Lotgering, F. K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I. J. Inorg. Nucl. Chem. 1959, 9, 113–123.

    Article  Google Scholar 

  40. Cao, L. Z.; Fu, W. Y.; Wang, S. F.; Wang, Q.; Sun, Z. H.; Yang, H.; Cheng, B. L.; Wang, H.; Zhou, Y. L. Effects of film thickness and preferred orientation on the dielectric properties of (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7 films. J. Phys. D: Appl. Phys. 2007, 40, 2906–2910.

    Article  Google Scholar 

  41. Li, W. L.; Zhang, T. D.; Xu, D.; Hou, Y. F.; Cao, W. P.; Fei, W. D. LaNiO3 seed layer induced enhancement of piezoelectric properties in (100)-oriented (1-x)BZT-xBCT thin films. J. Eur. Ceram. Soc. 2015, 35, 2041–2049.

    Article  Google Scholar 

  42. Zhang, Y.; Xue, D. Z.; Wu, H. J.; Ding, X. D.; Lookman, T.; Ren, X. B. Adaptive ferroelectric state at morphotropic phase boundary: Coexisting tetragonal and rhombohedral phases. Acta Mater. 2014, 71, 176–184.

    Article  Google Scholar 

  43. Souza Filho, A. G.; Lima, K. C. V.; Ayala, A. P.; Guedes, I.; Freire, P. T. C.; Melo, F. E. A.; Mendes Filho, J.; Araújo, E. B.; Eiras, J. A. Raman scattering study of the PbZr1–x TixO3 system: Rhombohedral-monoclinic-tetragonal phase transitions. Phys. Rev. B 2002, 66, 132107.

    Article  Google Scholar 

  44. Camargo, E. R.; Frantti, J.; Kakihana, M. Low-temperature chemical synthesis of lead zirconate titanate (PZT) powders free from halides and organics. J. Mater. Chem. 2001, 11, 1875–1879.

    Article  Google Scholar 

  45. Kühnlein, T.; Stiegelschmitt, A.; Roosen, A.; Rauscher, M. Microstructure development of PZT ceramics by doping with small amounts of Al2O3, SiO2, and Fe2O3. J. Am. Ceram. Soc. 2014, 97, 1638–1644.

    Article  Google Scholar 

  46. Durruthy-Rodríguez, M. D.; Yáñez-Limón, J. M. Photoluminescence in doped PZT ferroelectric ceramic system. In Ferroelectrics -Physical Effects; Lallart, M., Ed.; InTech: Rijeka, Croatia, 2011.

  47. Cho, S. B.; Chung, Y. C. Spin-polarized bandgap of graphene induced by alternative chemisorption with MgO (111) substrate. Carbon 2014, 77, 208–214.

    Article  Google Scholar 

  48. Cho, S. B.; Chung, Y.-C. Bandgap engineering of graphene by corrugation on lattice-mismatched MgO (111). J. Mater. Chem. C 2013, 1, 1595–1600.

    Article  Google Scholar 

  49. Cho, S. B.; Yun, K. H.; Yoo, D. S.; Ahn, K.; Chung, Y. C. Work function tuning of an ultrathin MgO film on an Ag substrate by generating oxygen impurities at the interface. Thin Solid Films 2013, 544, 541–544.

    Article  Google Scholar 

  50. Cho, S. B.; Lee, S.; Chung, Y.-C. Water trapping at the graphene/Al2O3 interface. Jpn. J. Appl. Phys. 2013, 52, 06GD09.

    Google Scholar 

  51. Jin, Y. M.; Wang, Y. U.; Khachaturyan, A. G.; Li, J. F.; Viehland, D. Conformal miniaturization of domains with low domain-wall energy: Monoclinic ferroelectric states near the morphotropic phase boundaries. Phys. Rev. Lett. 2003, 91, 197601.

    Article  Google Scholar 

  52. Chentir, M.-T.; Morioka, H.; Ehara, Y.; Saito, K.; Yokoyama, S.; Oikawa, T.; Funakubo, H. Changes of crystal structure and electrical properties with film thickness and Zr/(Zr+Ti) ratio for epitaxial Pb(Zr, Ti)O3 films grown on (100)cSrRuO3//(100)SrTiO3 substrates by metalorganic chemical vapor deposition. In Ferroelectrics-Characterization and Modeling. Lallart, M., Ed.; InTech: Rijeka, Croatia, 2011; pp. 229–244.

  53. Boldyreva, K.; Pintilie, L.; Lotnyk, A.; Misirlioglu, I. B.; Alexe, M.; Hesse, D. Ferroelectric/antiferroelectric Pb(Zr0.8Ti0.2)O3/PbZrO3 epitaxial multilayers: Growth and thickness-dependent properties. Ferroelectrics 2008, 370, 140–146.

    Article  Google Scholar 

  54. Du, X. H.; Belegundu, U.; Uchino, K. Crystal orientation dependence of piezoelectric properties in lead zirconate titanate: Theoretical expectation for thin films. Jpn. J. Appl. Phys. 1997, 36, 5580–5587.

    Article  Google Scholar 

  55. Kwok, C. K.; Desu, S. B. Ceramic Transactions: Ferroelectric Films (Volume 25); The American Ceramic Society: Westerville, OH,USA, 1992.

  56. Kwok, C. K.; Desu, S. B. Low temperature perovskite formation of lead zirconate titanate thin films by a seeding process. J. Mater. Res. 1993, 8, 339–344.

    Article  Google Scholar 

  57. Park, S.-E.; Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 1997, 82, 1804–1811.

    Article  Google Scholar 

  58. Lee, H. N.; Nakhmanson, S. M.; Chisholm, M. F.; Christen, H. M.; Rabe, K. M.; Vanderbilt, D. Suppressed dependence of polarization on epitaxial strain in highly polar ferroelectrics. Phys. Rev. Lett. 2007, 98, 217602.

    Article  Google Scholar 

  59. Khan, A. I.; Yu, P.; Trassin, M.; Lee, M. J.; You, L.; Salahuddin, S. The effects of strain relaxation on the dielectric properties of epitaxial ferroelectric Pb(Zr0.2Ti0.8)TiO3 thin films. Appl. Phys. Lett. 2014, 105, 022903.

    Article  Google Scholar 

  60. Park, C.-S.; Lee, J.-W.; Park, G.-T.; Kim, H.-E.; Choi, J.-J. Microstructural evolution and piezoelectric properties of thick Pb(Zr, Ti)O3 films deposited by the multi-sputtering method: Part II.Piezoelectric properties. J. Mater. Res. 2007, 22, 1373–1377.

    Article  Google Scholar 

  61. Park, G. T.; Choi, J. J.; Ryu, J.; Fan, H. Q.; Kim, H. E. Measurement of piezoelectric coefficients of lead zirconate titanate thin films by strain-monitoring pneumatic loading method. Appl. Phys. Lett. 2002, 80, 4606–4608.

    Article  Google Scholar 

  62. Jeong, C. K.; Kim, I.; Park, K.-I.; Oh, M. H.; Paik, H.; Hwang, G.-T.; No, K.; Nam, Y. S.; Lee, K. J. Virusdirected design of a flexible BaTiO3 nanogenerator. ACS Nano 2013, 7, 11016–11025.

    Article  Google Scholar 

  63. An, Y.-K.; Sohn, H. Visualization of non-propagating lamb wave modes for fatigue crack evaluation. J. Appl. Phys. 2015, 117, 114904.

    Article  Google Scholar 

  64. Kim, J.; Kim, K.; Sohn, H. In situ measurement of structural mass, stiffness, and damping using a reaction force actuator and a laser doppler vibrometer. Smart Mater. Struct. 2013, 22, 085004.

    Article  Google Scholar 

  65. Zhou, Z.; Tang, H. X.; Sodano, H. A. Scalable synthesis of morphotropic phase boundary lead zirconium titanate nanowires for energy harvesting. Adv. Mater. 2014, 26, 7547–7554.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the CEO of RoboPrint Co., Jung Gyu Park. This study was backed up by the research project–Product Development of Wearable Self-Powered Energy Device and Integrated Self-Powered Energy Device from PEPS (No. G01150219). This research was supported by Nano·Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) (No. 2016M3A7B4910636). This is also supported by Global Frontier R&D Program on Center for Integrated Smart Sensors (No. CISS-2016M3A6A6929958) funded by MSIP through NRF of Korea government. This work was additionally supported by Basic Science Research Program through the NRF of Korea funded by MSIP (No. 2016R1A2B4010674).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hoon Sohn, Yong-Chae Chung or Keon Jae Lee.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

12274_2016_1304_MOESM1_ESM.pdf

Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, C.K., Cho, S.B., Han, J.H. et al. Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film. Nano Res. 10, 437–455 (2017). https://doi.org/10.1007/s12274-016-1304-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1304-6

Keywords

Navigation