Skip to main content
Log in

Simulation and structure optimization of triboelectric nanogenerators considering the effects of parasitic capacitance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Parasitic capacitance is an unavoidable and usually unwanted capacitance that exists in electric circuits, and it is the most important second-order non-ideal effect that must be considered while designing a triboelectric nanogenerator (TENG) because its magnitude is comparable to the magnitude of the TENG capacitance. This paper investigates the structure and performance optimization of TENGs through modeling and simulation, taking the parasitic capacitance into account. Parasitic capacitance is generally found to cause severe performance degradation in TENGs, and its effects on the optimum matching resistance, maximum output power, and structural figures-of-merit (FOMs) of TENGs are thoroughly investigated and discussed. Optimum values of important structural parameters such as the gap and electrode length are determined for the different working modes of TENGs, systematically demonstrating how these optimum structural parameters change as functions of the parasitic capacitance. Additionally, it is demonstrated that the parasitic capacitance can improve the height tolerance of the metal freestanding-mode TENGs. This work provides a theoretical foundation for the structure and performance optimization of TENGs for practical applications and promotes the development of mechanical energy-harvesting techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, Y. F.; Wang, Z. L. Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors. Nano Energy 2015, 14, 3–14.

    Article  Google Scholar 

  2. Falconi, C.; Mantini, G.; D’Amico, A.; Wang, Z. L. Studying piezoelectric nanowires and nanowalls for energy harvesting. Sensors Actuat. B: Chem. 2009, 139, 511–519.

    Article  Google Scholar 

  3. Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

    Article  Google Scholar 

  4. Yi, F.; Lin, L.; Niu, S. M.; Yang, J.; Wu, W. Z.; Wang, S. H.; Liao, Q. L.; Zhang, Y.; Wang, Z. L. Self-powered trajectory, velocity, and acceleration tracking of a moving object/body using a triboelectric sensor. Adv. Funct. Mater. 2014, 24, 7488–7494.

    Article  Google Scholar 

  5. Yi, F.; Lin, L.; Niu, S. M.; Yang, P. K.; Wang, Z. N.; Chen, J.; Zhou, Y. S.; Zi, Y. L.; Wang, J.; Liao, Q. L. et al. Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors. Adv. Funct. Mater. 2015, 25, 3688–3696.

    Article  Google Scholar 

  6. Hinchet, R.; Kim, S. W. Wearable and implantable mechanical energy harvesters for self-powered biomedical systems. ACS Nano 2015, 9, 7742–7745.

    Article  Google Scholar 

  7. Lee, K. Y.; Gupta, M. K.; Kim, S. W. Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy 2015, 14, 139–160.

    Article  Google Scholar 

  8. Meng, B.; Tang, W.; Too, Z.-H.; Zhang, X. S.; Han, M. D.; Liu, W.; Zhang, H. X. A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy Environ. Sci. 2013, 6, 3235–3240.

    Article  Google Scholar 

  9. Meng, B.; Tang, W.; Zhang, X. S.; Han, M. D.; Liu, W.; Zhang, H. X. Self-powered flexible printed circuit board with integrated triboelectric generator. Nano Energy 2013, 2, 1101–1106.

    Article  Google Scholar 

  10. Yi, F.; Wang, X. F.; Niu, S. M.; Li, S. M.; Yin, Y. J.; Dai, K. R.; Zhang, G. J.; Lin, L.; Wen, Z.; Guo, H. Y. et al. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Sci. Adv. 2016, 2, e1501624.

    Article  Google Scholar 

  11. Nguyen, V.; Yang, R. S. Effect of humidity and pressure on the triboelectric nanogenerator. Nano Energy 2013, 2, 604–608.

    Article  Google Scholar 

  12. Yu, Y. H.; Li, Z. D.; Wang, Y. M.; Gong, S. Q.; Wang, X. D. Sequential infiltration synthesis of doped polymer films with tunable electrical properties for efficient triboelectric nanogenerator development. Adv. Mater. 2015, 27, 4938–4944.

    Article  Google Scholar 

  13. Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013, 13, 2226–2233.

    Article  Google Scholar 

  14. Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.

    Article  Google Scholar 

  15. Hu, Y. F.; Yang, J.; Jing, Q. S.; Niu, S. M.; Wu, W. Z.; Wang, Z. L. Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester. ACS Nano 2013, 7, 10424–10432.

    Article  Google Scholar 

  16. Niu, S. M.; Wang, X. F.; Yi, F.; Zhou, Y. S.; Wang, Z. L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975.

    Article  Google Scholar 

  17. Wang, X. F.; Niu, S. M.; Yin, Y. J.; Yi, F.; You, Z.; Wang, Z. L. Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater. 2015, 5, 1501467.

    Article  Google Scholar 

  18. Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340.

    Article  Google Scholar 

  19. Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583.

    Article  Google Scholar 

  20. Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 2013, 25, 6184–6193.

    Article  Google Scholar 

  21. Niu, S. M.; Liu, Y.; Chen, X. Y.; Wang, S. H.; Zhou, Y. S.; Lin, L.; Xie, Y. N.; Wang, Z. L. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 2015, 12, 760–774.

    Article  Google Scholar 

  22. Niu, S. M.; Wang, Z. L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015, 14, 161–192.

    Article  Google Scholar 

  23. Alley, C. L.; Atwood, K. W. Electronic Engineering; Wiley: New York, 1973.

  24. Dascher, D. J. Measuring parasitic capacitance and inductance using TDR. Hewlett-Packard J. 1996, 47, 83–96.

    Google Scholar 

  25. Lu, H. Y.; Zhu, J. G.; Hui, S. Y. R. Experimental determination of stray capacitances in high frequency transformers. IEEE T. Power Electr. 2003, 18, 1105–1112.

    Article  Google Scholar 

  26. Kinoshita, K.; Tsunoda, K.; Sato, Y.; Noshiro, H.; Yagaki, S.; Aoki, M.; Sugiyama, Y. Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance. Appl. Phys. Lett. 2008, 93, 033506.

    Article  Google Scholar 

  27. Suzuki, K. Parasitic capacitance of submicrometer MOSFET’s. IEEE Trans. Electron Dev. 1999, 46, 1895–1900.

    Article  Google Scholar 

  28. Neugebauer, T. C.; Perreault, D. J. Parasitic capacitance cancellation in filter inductors. IEEE T. Power Electr. 2006, 21, 282–288.

    Article  Google Scholar 

  29. Zi, Y. L.; Niu, S. M.; Wang, J.; Wen, Z.; Tang, W.; Wang, Z. L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 2015, 6, 8376.

    Article  Google Scholar 

  30. Niu, S. M.; Wang, S. H.; Liu, Y.; Zhou, Y. S.; Lin, L.; Hu, Y. F.; Pradel, K. C.; Wang, Z. L. A theoretical study of grating structured triboelectric nanogenerators. Energy Environ. Sci. 2014, 7, 2339–2349.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, K., Wang, X., Niu, S. et al. Simulation and structure optimization of triboelectric nanogenerators considering the effects of parasitic capacitance. Nano Res. 10, 157–171 (2017). https://doi.org/10.1007/s12274-016-1275-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1275-7

Keywords

Navigation