Skip to main content
Log in

Highly efficient and multidimensional extraction of targets from complex matrices using aptamer-driven recognition

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Adsorbents are widely employed in both fundamental and applied research areas such as separation technology, biotechnology, and environmental science. Selectivity and reusability are two most important requirements for adsorbents. Aptamers exhibit perfect selectivity and easy regeneration, which make them uniquely effective adsorption materials. Herein, we have rationally designed novel aptamer-based adsorbents and investigated their performance in extraction/separation of targets from an aqueous solution. These adsorbents can selectively extract targets from complicated sample matrices containing background compounds. Moreover, they can also be easily recycled without a significant loss of adsorption capacity. Notably, the adsorbents did not affect the activity of isolated biological samples, revealing their potential for the purification/separation of biomolecules. Composite adsorbents were constructed using aptamer-based adsorbents and a porous polymer, displaying highly efficient target separation from aqueous solution. Finally, separation columns were constructed, and targets in the aqueous solution were efficiently separated by these columns. The aptamerbased adsorbents described here exhibit great promise for potential applications in separation technology, biotechnology, and environment-related areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Augusto, F.; Carasek, E.; Silva, R. G. C.; Rivellino, S. R.; Batista, A. D.; Martendal, E. New sorbents for extraction and microextraction techniques. J. Chromatogr. A 2010, 1217, 2533–2542.

    Article  Google Scholar 

  2. Dabrowski, A. Adsorption—From theory to practice. Adv. Colloid Interface Sci. 2001, 93, 135–224.

    Article  Google Scholar 

  3. Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 2008, 130, 28–29.

    Article  Google Scholar 

  4. Crane, R. A.; Dickinson, M.; Popescu, I. C.; Scott, T. B. Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res. 2011, 45, 2931–2942.

    Article  Google Scholar 

  5. Lukens, W. W.; Schmidt-Winkel, P.; Zhao, D. Y.; Feng, J. L.; Stucky, G. D. Evaluating pore sizes in mesoporous materials: A simplified standard adsorption method and a simplified broekhoff-de Boer method. Langmuir 1999, 15, 5403–5409.

    Article  Google Scholar 

  6. Liu, B. W.; Liu, J. W. DNA adsorption by magnetic iron oxide nanoparticles and its application for arsenate detection. Chem. Commun. 2014, 50, 8568–8570.

    Article  Google Scholar 

  7. Huang, D. N.; Deng, C. H.; Zhang, X. M. Functionalized magnetic nanomaterials as solid-phase extraction adsorbents for organic pollutants in environmental analysis. Anal. Methods 2014, 6, 7130–7141.

    Article  Google Scholar 

  8. Borlido, L.; Azevedo, A. M.; Roque, A. C. A.; Aires-Barros, M. R. Magnetic separations in biotechnology. Biotechnol. Adv. 2013, 31, 1374–1385.

    Article  Google Scholar 

  9. Teng, W.; Wu, Z. X.; Fan, J. W.; Chen, H.; Feng, D.; Lv, Y. Y.; Wang, J. X.; Asiri, A. M.; Zhao, D. Y. Ordered mesoporous carbons and their corresponding column for highly efficient removal of microcystin-LR. Energy Environ. Sci. 2013, 6, 2765–2776.

    Article  Google Scholar 

  10. Kalia, S.; Kango, S.; Kumar, A.; Haldorai, Y.; Kumari, B.; Kumar, R. Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym. Sci. 2014, 292, 2025–2052.

    Article  Google Scholar 

  11. Qu, X. L.; Alvarez, P. J. J.; Li, Q. L. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47, 3931–3946.

    Article  Google Scholar 

  12. Soto, M. L.; Moure, A.; Domínguez, H.; Parajó, J. C. Recovery, concentration and purification of phenolic compounds by adsorption: A review. J. Food Eng. 2011, 105, 1–27.

    Article  Google Scholar 

  13. Wu, Z. X.; Li, W.; Webley, P. A.; Zhao, D. Y. General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal. Adv. Mater. 2012, 24, 485–491.

    Article  Google Scholar 

  14. Wang, J.; Shen, H. J.; Hu, X. X.; Li, Y.; Li, Z. H.; Xu, J. F.; Song, X. F.; Zeng, H. B.; Yuan, Q. A targeted “capture” and “removal” scavenger toward multiple pollutants for water remediation based on molecular recognition. Adv. Sci. 2016, 3, 1500289.

    Article  Google Scholar 

  15. Wang, P.; Shi, Q. H.; Liang, H. J.; Steuerman, D. W.; Stucky, G. D.; Keller, A. A. Enhanced environmental mobility of carbon nanotubes in the presence of humic acid and their removal from aqueous solution. Small 2008, 4, 2166–2170.

    Article  Google Scholar 

  16. Huang, P. J. J.; Liu, J. W. Immobilization of DNA on magnetic microparticles for mercury enrichment and detection with flow cytometry. Chem.—Eur. J. 2011, 17, 5004–5010.

    Article  Google Scholar 

  17. Yokoi, T.; Kubota, Y.; Tatsumi, T. Amino-functionalized mesoporous silica as base catalyst and adsorbent. Appl. Catal. A: Gen. 2012, 421–422, 14–37.

    Article  Google Scholar 

  18. Xie, L. J.; Jiang, R. F.; Zhu, F.; Liu, H.; Ouyang, G. F. Application of functionalized magnetic nanoparticles in sample preparation. Anal. Bioanal. Chem. 2014, 406, 377–399.

    Article  Google Scholar 

  19. Bunka, D. H. J.; Stockley, P. G. Aptamers come of age—At last. Nat. Rev. Microbiol. 2006, 4, 588–596.

    Article  Google Scholar 

  20. Liu, J. W.; Cao, Z. H.; Lu, Y. Functional nucleic acid sensors. Chem. Rev. 2009, 109, 1948–1998.

    Article  Google Scholar 

  21. Tan, W. H.; Donovan, M. J.; Jiang, J. H. Aptamers from cellbased selection for bioanalytical applications. Chem. Rev. 2013, 113, 2842–2862.

    Article  Google Scholar 

  22. Pei, H.; Zuo, X.; Zhu, D.; Huang, Q.; Fan, C. Functional DNA nanostructures for theranostic applications. Acc. Chem. Res. 2014, 47, 550–559.

    Article  Google Scholar 

  23. Fang, X. H.; Tan, W. H. Aptamers generated from Cell- SELEX for molecular medicine: A chemical biology approach. Acc. Chem. Res. 2010, 43, 48–57.

    Article  Google Scholar 

  24. Hamula, C. L. A.; Guthrie, J. W.; Zhang, H. Q.; Li, X. F.; Le, X. C. Selection and analytical applications of aptamers. TrAC Trend. Anal. Chem. 2006, 25, 681–691.

    Article  Google Scholar 

  25. Giljohann, D. A.; Mirkin, C. A. Drivers of biodiagnostic development. Nature 2009, 462, 461–464.

    Article  Google Scholar 

  26. Hamula, C. L. A.; Zhang, H. Q.; Guan, L. L.; Li, X. F.; Le, X. C. Selection of aptamers against live bacterial cells. Anal. Chem. 2008, 80, 7812–7819.

    Article  Google Scholar 

  27. Liu, Q. L.; Jin, C.; Wang, Y. Y.; Fang, X. H.; Zhang, X. B.; Chen, Z.; Tan, W. H. Aptamer-conjugated nanomaterials for specific cancer cell recognition and targeted cancer therapy. NPG Asia Mater. 2014, 6, e95.

    Article  Google Scholar 

  28. Song, S. P.; Wang, L. H.; Li, J.; Fan, C. H.; Zhao, J. L. Aptamer-based biosensors. TrAC Trend. Anal. Chem. 2008, 27, 108–117.

    Article  Google Scholar 

  29. Jayasena, S. D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 1999, 45, 1628–1650.

    Google Scholar 

  30. Guo, W.; Hong, F.; Liu, N. N.; Huang, J. Y.; Wang, B. Y.; Duan, R. X.; Lou, X. D.; Xia, F. Target-specific 3D DNA gatekeepers for biomimetic nanopores. Adv. Mater. 2015, 27, 2090–2095.

    Article  Google Scholar 

  31. Zheng, D.; Seferos, D. S.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A. Aptamer nano-flares for molecular detection in living cells. Nano Lett. 2009, 9, 3258–3261.

    Article  Google Scholar 

  32. Mairal, T.; Özalp, V. C.; Sánchez, P. L.; Mir, M.; Katakis, I.; O’Sullivan, C. K. Aptamers: Molecular tools for analytical applications. Anal. Bioanal. Chem. 2008, 390, 989–1007.

    Article  Google Scholar 

  33. Tombelli, S.; Minunni, M.; Mascini, M. Analytical applications of aptamers. Biosens. Bioelectron. 2005, 20, 2424–2434.

    Article  Google Scholar 

  34. Liang, H.; Zhang, X. B.; Lv, Y. F.; Gong, L.; Wang, R. W.; Zhu, X. Y.; Yang, R. H.; Tan, W. H. Functional DNAcontaining nanomaterials: Cellular applications in biosensing, imaging, and targeted therapy. Acc. Chem. Res. 2014, 47, 1891–1901.

    Article  Google Scholar 

  35. Tombelli, S.; Minunni, M.; Mascini, M. Aptamers-based assays for diagnostics, environmental and food analysis. Biomol. Eng. 2007, 24, 191–200.

    Article  Google Scholar 

  36. Palchetti, I.; Mascini, M. Nucleic acid biosensors for environmental pollution monitoring. Analyst 2008, 133, 846–854.

    Article  Google Scholar 

  37. Huang, P. J.; Liu, J. W. Flow cytometry-assisted detection of adenosine in serum with an immobilized aptamer sensor. Anal. Chem. 2010, 82, 4020–4026.

    Article  Google Scholar 

  38. Zhao, Q.; Li, X. F.; Le, X. C. Aptamer-modified monolithic capillary chromatography for protein separation and detection. Anal. Chem. 2008, 80, 3915–3920.

    Article  Google Scholar 

  39. Wang, J.; Wei, Y. R.; Hu, X. X.; Fang, Y. Y.; Li, X. Y.; Liu, J.; Wang, S. F.; Yuan, Q. Protein activity regulation: Inhibition by closed-loop aptamer-based structures and restoration by near-IR stimulation. J. Am. Chem. Soc. 2015, 137, 10576–10584.

    Article  Google Scholar 

  40. Li, W.; Yang, J. P.; Wu, Z. X.; Wang, J. X.; Li, B.; Feng, S. S.; Deng, Y. H.; Zhang, F.; Zhao, D. Y. A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core–shell structures. J. Am. Chem. Soc. 2012, 134, 11864–11867.

    Article  Google Scholar 

  41. Yuan, Y.; Chen, S.; Paunesku, T.; Gleber, S. C.; Liu, W. C.; Doty, C. B.; Mak, R.; Deng, J. J.; Jin, Q. L.; Lai, B. et al. Epidermal growth factor receptor targeted nuclear delivery and high-resolution whole cell X-ray imaging of Fe3O4@TiO2 nanoparticles in cancer cells. ACS Nano 2013, 7, 10502–10517.

    Article  Google Scholar 

  42. Yuan, Q.; Wu, Y.; Wang, J.; Lu, D. Q.; Zhao, Z. L.; Liu, T.; Zhang, X. B.; Tan, W. H. Targeted bioimaging and photodynamic therapy nanoplatform using an aptamerguided G-quadruplex DNA carrier and near-infrared light. Angew. Chem., Int. Ed. 2013, 52, 13965–13969.

    Article  Google Scholar 

  43. Dave, N.; Chan, M. Y.; Huang, P. J. J.; Smith, B. D.; Liu, J. W. Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water. J. Am. Chem. Soc. 2010, 132, 12668–12673.

    Article  Google Scholar 

  44. Jo, M.; Ahn, J. Y.; Lee, J.; Lee, S.; Hong, S. W.; Yoo, J. W.; Kang, J.; Dua, P. Lee, D. K.; Hong, S. et al. Development of single-stranded DNA aptamers for specific bisphenol a detection. Oligonucleotides 2011, 21, 85–91.

    Article  Google Scholar 

  45. Chang, Y. C.; Yang, C. Y.; Sun, R. L.; Cheng, Y. F.; Kao, W. C.; Yang, P. C. Rapid single cell detection of staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci. Rep. 2013, 3, 1863.

    Google Scholar 

  46. Song, H.; Nor, Y. A.; Yu, M. H.; Yang, Y. N.; Zhang, J.; Zhang, H. W.; Xu, C.; Mitter, N.; Yu, C. Z. Silica nanopollens enhance adhesion for long-term bacterial inhibition. J. Am. Chem. Soc. 2016, 138, 6455–6462.

    Article  Google Scholar 

  47. Zhu, M.; Zhu, Y. F.; Zhang, L. X.; Shi, J. L. Preparation of chitosan/mesoporous silica nanoparticle composite hydrogels for sustained co-delivery of biomacromolecules and small chemical drugs. Sci. Technol. Adv. Mat. 2013, 14, 045005.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51272186 and 21422105), “A Foundation for the Author of National Excellent Doctoral Dissertation of P. R. China” (No. 201220), and Ten Thousand Talents Program for Young Talents. Q. Y. thanks for large-scale instrument and equipment sharing foundation of Wuhan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Yuan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Shen, H., Huang, C. et al. Highly efficient and multidimensional extraction of targets from complex matrices using aptamer-driven recognition. Nano Res. 10, 145–156 (2017). https://doi.org/10.1007/s12274-016-1273-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1273-9

Keywords

Navigation