Skip to main content
Log in

Gold nanoparticle-based paper sensor for ultrasensitive and multiple detection of 32 (fluoro)quinolones by one monoclonal antibody

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

For rapid and simultaneous detection of (fluoro)quinolones, a broadly specific monoclonal antibody (mAb) that recognizes 32 (fluoro)quinolone antibiotics was prepared using a mixture of a norfloxacin derivative and a sarfloxacin derivative as the hapten. An immunochromatographic strip based on gold nanoparticles (AuNPs) was then assembled with goat anti-mouse antibody and antigen (sarfloxacin coupled to ovalbumin), used to form the C line and T line, respectively. This antigen competes with the (fluoro)quinolones in a sample incubated with mAbs labeled with AuNPs. The strip can detect 32 (fluoro)quinolones including oxolinic acid, nalidixic acid, miloxacin, pipemidic acid, piromidic acid, rosoxacin, cinoxacin, norfloxacin, pefloxacin, lomfloxacin, enofloxacin, fleroxacin, ciprofloxacin, enrofloxacin, dafloxacin, orbifloxacin, sparfloxacin, gemifloxacin, besifloxacin, balofloxacin, gatifloxacin, moxifloxacin, nadifloxacin, ofloxacin, marbofloxacin, flumequine, pazufloxacin, prulifloxacin, sarafloxacin, difloxacin, trovafloxacin, and tosufloxacin in milk within 10 min with the naked eye. The cut-off values of the strip range from 1 to 100 ng/mL and the limits of detection are 0.1–10 ng/mL. The strip does not cross-react with antibiotics including tetracycline, sulfamethazine, ampicillin, erythromycin, aflatoxin B1, or gentamicin. In short, this immunochromatographic strip is a very useful tool for the primary screening of (fluoro)quinolones in milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ceyssens, P.-J.; Van Bambeke, F.; Mattheus, W.; Bertrand, S.; Fux, F.; Van Bossuyt, E.; Damée, S.; Nyssen, H.-J.; De Craeye, S.; Verhaegen, J. et al. Molecular analysis of rising fluoroquinolone resistance in Belgian non-invasive streptococcus pneumoniae isolates (1995–2014). PLoS One 2016, 11, e0154816.

    Article  Google Scholar 

  2. Suryoprabowo, S.; Liu, L. Q.; Peng, J.; Kuang, H.; Xu, C. L. Development of a broad specific monoclonal antibody for fluoroquinolone analysis. Food Anal. Meth. 2014, 7, 2163–2168.

    Article  Google Scholar 

  3. Takahashi, H.; Hayakawa, I.; Akimoto, T. The history of the development and changes of quinolone antibacterial agents. Yakushigaku Zasshi 2003, 38, 161–179.

    Google Scholar 

  4. Zhu, Y.; Li, L.; Wang, Z. H.; Chen, Y. Q.; Zhao, Z. M.; Zhu, L.; Wu, X. P.; Wan, Y. P.; He, F. Y.; Shen, J. Z. Development of an immunochromatography strip for the rapid detection of 12 fluoroquinolones in chicken muscle and liver. J. Agric. Food Chem. 2008, 56, 5469–5474.

    Article  Google Scholar 

  5. Rubinstein, E. History of quinolones and their side effects. Chemotherapy 2001, 47, 3–8.

    Article  Google Scholar 

  6. Wu, X.-L.; Xiang, L.; Yan, Q.-Y.; Jiang, Y.-N.; Li, Y.-W.; Huang, X.-P.; Li, H.; Cai, Q.-Y.; Mo, C.-H. Distribution and risk assessment of quinolone antibiotics in the soils from organic vegetable farms of a subtropical city, Southern China. Sci. Total Environ. 2014, 487, 399–406.

    Article  Google Scholar 

  7. Rutgersson, C.; Fick, J.; Marathe, N.; Kristiansson, E.; Janzon, A.; Angelin, M.; Johansson, A.; Shouche, Y.; Flach, C.-F.; Larsson, D. G. J. Fluoroquinolones and qnr genes in sediment, water, soil, and human fecal flora in an environment polluted by manufacturing discharges. Environ. Sci. Technol. 2014, 48, 7825–7832.

    Article  Google Scholar 

  8. Wang, H. X.; Wang, B.; Zhao, Q.; Zhao, Y. P.; Fu, C. W.; Feng, X.; Wang, N.; Su, M. F.; Tang, C. X.; Jiang, F. et al. Antibiotic body burden of Chinese school children: A multisite biomonitoring-based study. Environ. Sci. Technol. 2015, 49, 5070–5079.

    Article  Google Scholar 

  9. Wang, H. X.; Wang, N.; Wang, B.; Fang, H.; Fu, C. W.; Tang, C. X.; Jiang, F.; Zhou, Y.; He, G. S.; Zhao, Q. et al. Antibiotics detected in urines and adipogenesis in school children. Environ. Int. 2016, 89–90, 204–211.

    Article  Google Scholar 

  10. Codex Alimentarius Commission. Joint FAO/WHO Food Standards Programme; Rome, Italy, 2012.

  11. The Ministry of Agriculture. Gazette of the Ministry of Agriculture of The People’s Republic of China, No. 2292; Beijing, China, 2015.

  12. Hermo, M. P.; Nemutlu, E.; Kir, S.; Barrón, D.; Barbosa, J. Improved determination of quinolones in milk at their MRL levels using LC-UV, LC-FD, LC-MS and LC-MS/MS and validation in line with regulation 2002/657/EC. Anal. Chim. Acta 2008, 613, 98–107.

    Article  Google Scholar 

  13. Hermo, M. P.; Barrón, D.; Barbosa, J. Development of analytical methods for multiresidue determination of quinolones in pig muscle samples by liquid chromatography with ultraviolet detection, liquid chromatography-mass spectrometry and liquid chromagraphy-tandem mass spectrometry. J. Chromatogr. A 2006, 1104, 132–139.

    Article  Google Scholar 

  14. Mirzajani, R.; Kardani, F. Fabrication of ciprofloxacin molecular imprinted polymer coating on a stainless steel wire as a selective solid-phase microextraction fiber for sensitive determination of fluoroquinolones in biological fluids and tablet formulation using HPLC-UV detection. J. Pharm. Biomed. Anal. 2016, 122, 98–109.

    Article  Google Scholar 

  15. Piatkowska, M.; Jedziniak, P.; Zmudzki, J. Multiresidue method for the simultaneous determination of veterinary medicinal products, feed additives and illegal dyes in eggs using liquid chromatography-tandem mass spectrometry. Food Chem. 2016, 197, 571–580.

    Article  Google Scholar 

  16. Wang, Z. H.; Zhu, Y.; Ding, S. Y.; He, F. Y.; Beier, R. C.; Li, J. C.; Jiang, H. Y.; Feng, C. W.; Wan, Y. P.; Zhang, S. X. et al. Development of a monoclonal antibody-based broad-specificity elisa for fluoroquinolone antibiotics in foods and molecular modeling studies of cross-reactive compounds. Anal. Chem. 2007, 79, 4471–4483.

    Article  Google Scholar 

  17. Peng, J.; Kong, D. Z.; Liu, L. Q.; Song, S. S.; Kuang, H.; Xu, C. L. Determination of quinoxaline antibiotics in fish feed by enzyme-linked immunosorbent assay using a monoclonal antibody. Anal. Methods 2015, 7, 5204–5209.

    Article  Google Scholar 

  18. Liu, B.-H.; Chu, K.-C.; Yu, F.-Y. Novel monoclonal antibody-based sensitive enzyme-linked immunosorbent assay and rapid immunochromatographic strip for detecting aflatoxin M1 in milk. Food Control 2016, 66, 1–7.

    Article  Google Scholar 

  19. Cai, M. A.; Li, F.; Zhang, Y.; Wang, Q. B. One-pot polymerase chain reaction with gold nanoparticles for rapid and ultrasensitive DNA detection. Nano Res. 2010, 3, 557–563.

    Article  Google Scholar 

  20. Curnis, F.; Fiocchi, M.; Sacchi, A.; Gori, A.; Gasparri, A.; Corti, A. NGR-tagged nano-gold: A new CD13-selective carrier for cytokine delivery to tumors. Nano Res. 2016, 9, 1393–1408.

    Article  Google Scholar 

  21. Panfilova, E.; Shirokov, A.; Khlebtsov, B.; Matora, L.; Khlebtsov, N. Multiplexed dot immunoassay using Ag nanocubes, Au/Ag alloy nanoparticles, and Au/Ag nanocages. Nano Res. 2012, 5, 124–134.

    Article  Google Scholar 

  22. Huang, P.; Tu, D. T.; Zheng, W.; Zhou, S. Y.; Chen, Z.; Chen, X. Y. Inorganic lanthanide nanoprobes for backgroundfree luminescent bioassays. Sci. China Mater. 2015, 58, 156–177.

    Article  Google Scholar 

  23. Gu, Y.; Meng, G. W.; Wang, M. L.; Huang, Q.; Zhu, C. H.; Huang, Z. L. R6G/8-AQ co-functionalized Fe3O4@SiO2 nanoparticles for fluorescence detection of trace Hg2+ and Zn2+ in aqueous solution. Sci. China Mater. 2015, 58, 550–558.

    Article  Google Scholar 

  24. Li, X.; Song, J.; Chen, B. L.; Wang, B.; Li, R.; Jiang, H. M.; Liu, J. F.; Li, C. Z. A label-free colorimetric assay for detection of c-Myc mRNA based on peptide nucleic acid and silver nanoparticles. Sci. Bull. 2016, 61, 276–281.

    Article  Google Scholar 

  25. Ma, M.; Chen, H. R.; Shi, J. L. Construction of smart inorganic nanoparticle-based ultrasound contrast agents and their biomedical applications. Sci. Bull. 2015, 60, 1170–1183.

    Article  Google Scholar 

  26. Lin, B. B.; Su, H. Y.; Jin, R. R.; Li, D. Y.; Wu, C. Q.; Jiang, X.; Xia, C. C.; Gong, Q. Y.; Song, B.; Ai, H. Multifunctional dextran micelles as drug delivery carriers and magnetic resonance imaging probes. Sci. Bull. 2015, 60, 1272–1280.

    Article  Google Scholar 

  27. Li, J. X.; Zhao, Y. L. Nanotechnology in the programmed cell therapy: Nowhere to escape of cancer. Sci. Bull. 2016, 61, 45–47.

    Article  Google Scholar 

  28. Li, F. H.; Bao, Y.; Wang, D. D.; Wang, W.; Niu, L. Smartphones for sensing. Sci. Bull. 2016, 61, 190–201.

    Article  Google Scholar 

  29. Fu, C. H.; He, C. F.; Tan, L. F.; Wang, S. H.; Shang, L.; Li, L. L.; Meng, X. W.; Liu, H. Y. High-yield preparation of robust gold nanoshells on silica nanorattles with good biocompatiblity. Sci. Bull. 2016, 61, 282–291.

    Article  Google Scholar 

  30. Xing, C. R.; Liu, L. Q.; Song, S. S.; Feng, M.; Kuang, H.; Xu, C. L. Ultrasensitive immunochromatographic assay for the simultaneous detection of five chemicals in drinking water. Biosens. Bioelectron. 2015, 66, 445–453.

    Article  Google Scholar 

  31. Rivas, L.; de la Escosura-Muñiz, A.; Serrano, L.; Altet, L.; Francino, O.; Sánchez, A.; Merkoçi, A. Triple lines gold nanoparticle-based lateral flow assay for enhanced and simultaneous detection of Leishmania DNA and endogenous control. Nano Res. 2015, 8, 3704–3714.

    Article  Google Scholar 

  32. Wang, W. B.; Liu, L. Q.; Song, S. S.; Xu, L. G.; Kuang, H.; Zhu, J. P.; Xu, C. L. Gold nanoparticle-based strip sensor for multiple detection of twelve salmonella strains with a genus-specific lipopolysaccharide antibody. Sci. China Mater., in press, DOI: 10.1007/s40843-016-5077-0.

  33. Lee, H.-J.; Ryu, Y.-J.; Tutkun, L.; Park, E.-K. Determination of oxolinic acid residues in the muscle tissue of olive flounder (Paralichthysolivaceus) by a lateral flow immunoassay. Food Agric. Immunol. 2016, 27, 367–376.

    Article  Google Scholar 

  34. Zhi, A.-M.; Li, B.-B.; Liu, Q.-T.; Hu, X.-F.; Zhao, D.; Hou, Y.-Z.; Deng, R.-G.; Chai, S.-J.; Zhang, G.-P. Development of a lateral-flow immunochromatographic test device for the rapid detection of difloxacin residues. Food Agric. Immunol. 2010, 21, 335–345.

    Article  Google Scholar 

  35. Zhao, Y. L.; Zhang, G. P.; Liu, Q. T.; Teng, M.; Yang, J. F.; Wang, J. H. Development of a lateral flow colloidal gold immunoassay strip for the rapid detection of enrofloxacin residues. J. Agric. Food Chem. 2008, 56, 12138–12142.

    Article  Google Scholar 

  36. Tochi, B. N.; Peng, J.; Song, S. S.; Liu, L. Q.; Kuang, H.; Xu, C. L. Determination of sarafloxacin and its analogues in milk using an enzyme-linked immunosorbent assay based on a monoclonal antibody. Anal. Methods 2016, 8, 1626–1636.

    Article  Google Scholar 

  37. Li, S.; Xu, L. G.; Ma, W.; Kuang, H.; Wang, L. B.; Xu, C. L. Triple raman label-encoded gold nanoparticle trimers for simultaneous heavy metal ion detection. Small 2015, 11, 3435–3439.

    Article  Google Scholar 

  38. Liu, L. Q.; Luo, L. J.; Suryoprabowo, S.; Peng, J.; Kuang, H.; Xu, C. L. Development of an immunochromatographic strip test for rapid detection of ciprofloxacin in milk samples. Sensors 2014, 14, 16785–16798.

    Article  Google Scholar 

  39. Kong, D. Z.; Liu, L. Q.; Song, S. S.; Suryoprabowo, S.; Li, A. K.; Kuang, H.; Wang, L. B.; Xu, C. L. A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins. Nanoscale 2016, 8, 5245–5253.

    Article  Google Scholar 

  40. Wang, Z. H.; Zhang, H. Y.; Ni, H. J.; Zhang, S. X.; Shen, J. Z. Development of a highly sensitive and specific immunoassay for enrofloxacin based on heterologous coating haptens. Anal. Chim. Acta 2014, 820, 152–158.

    Article  Google Scholar 

  41. Liu, N.; Zhao, Z. Y.; Tan, Y. L.; Lu, L.; Wang, L.; Liao, Y. C.; Beloglazova, N.; De Saeger, S.; Zheng, X. D.; Wu, A. B. Simultaneous raising of rabbit monoclonal antibodies to fluoroquinolones with diverse recognition functionalities via single mixture immunization. Anal. Chem. 2016, 88, 1246–1252.

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Nos. 21522102, 21503095, 21471068, 21371081, and 21301073), the Key Programs from MOST (Nos. 2016YFD0401101 and 2012YQ09019410), and grants from Natural Science Foundation of Jiangsu Province, MOF and MOE (Nos. BK20150145, BX20151038, BK20140003, BE2014672, BE2013613, BE2013611).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Kuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Liu, L., Xu, L. et al. Gold nanoparticle-based paper sensor for ultrasensitive and multiple detection of 32 (fluoro)quinolones by one monoclonal antibody. Nano Res. 10, 108–120 (2017). https://doi.org/10.1007/s12274-016-1270-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1270-z

Keywords

Navigation