Skip to main content
Log in

Quantifying and sorting of gold nanoparticle dimers from complex reaction mixtures using flow cytometry

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The formation, characterization, and purification of well-defined stoichiometric clusters of metallic nanoparticles, particularly in the form of dimers or trimers, are important and formidable challenges in nanoscience. Here we show that flow cytometry can be used as a high-throughput method to determine the relative distribution of oligomeric clusters of molecularly linked gold nanoparticles in bulk solution at the single-particle level with good statistics. This unique information would be near impossible to obtain using traditional characterization techniques. The flow cytometric approach is utilized to provide fast feedback for the synthesis optimization of the complex reaction between citrate-stabilized gold nanoparticles and bi-functional molecular wires with dithiocarbamate anchoring groups. Finally, we demonstrate that flow cytometry can be used to significantly increase the proportion of AuNP dimers from an oligomer-rich polydisperse sample by size-selective sorting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fernandez, Y. D.; Sun, L.; Gschneidtner, T.; Moth-Poulsen, K. Research update: Progress in synthesis of nanoparticle dimers by self-assembly. APL Mater. 2014, 2, 010702.

    Article  Google Scholar 

  2. Hofmann, A.; Schmiel, P.; Stein, B.; Graf, C. Controlled formation of gold nanoparticle dimers using multivalent thiol ligands. Langmuir 2011, 27, 15165–15175.

    Article  Google Scholar 

  3. Sönnichsen, C.; Reinhard, B. M.; Liphardt, J.; Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 2005, 23, 741–745.

    Article  Google Scholar 

  4. Thacker, V. V.; Herrmann, L. O.; Sigle, D. O.; Zhang, T.; Liedl, T.; Baumberg, J. J.; Keyser, U. F. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat. Commun. 2014, 5, 3448.

    Article  Google Scholar 

  5. Chen, J. I. L.; Chen, Y.; Ginger, D. S. Plasmonic nanoparticle dimers for optical sensing of DNA in complex media. J. Am. Chem. Soc. 2010, 132, 9600–9601.

    Article  Google Scholar 

  6. Cheng, Y. N.; Wang, M.; Borghs, G.; Chen, H. Z. Gold nanoparticle dimers for plasmon sensing. Langmuir 2011, 27, 7884–7891.

    Article  Google Scholar 

  7. Dadosh, T.; Gordin, Y.; Krahne, R.; Khivrich, I.; Mahalu, D.; Frydman, V.; Sperling, J.; Yacoby, A.; Bar-Joseph, I. Measurement of the conductance of single conjugated molecules. Nature 2005, 436, 677–680.

    Article  Google Scholar 

  8. Jain, T.; Tang, Q. X.; Bjørnholm, T.; Nørgaard, K. Wet chemical synthesis of soluble gold nanogaps. Acc. Chem. Res. 2014, 47, 2–11.

    Article  Google Scholar 

  9. Zohar, N.; Chuntonov, L.; Haran, G. The simplest plasmonic molecules: Metal nanoparticle dimers and trimers. J. Photoch. Photobio. C 2014, 21, 26–39.

    Article  Google Scholar 

  10. Lee, K.; Irudayara, J. Correct spectral conversion between surface-enhanced Raman and plasmon resonance scattering from nanoparticle dimers for single-molecule detection. Small 2013, 9, 1106–1115.

    Article  Google Scholar 

  11. Gschneidtner, T. A.; Fernandez, Y. A. D.; Moth-Poulsen, K. Progress in self-assembled single-molecule electronic devices. J. Mater. Chem. C 2013, 1, 7127–7133.

    Article  Google Scholar 

  12. Filipe, V.; Hawe, A.; Jiskoot, W. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm. Res. 2010, 27, 796–810.

    Article  Google Scholar 

  13. Reeler, N. E. A.; Lerstrup, K. A.; Somerville, W.; Speder, J.; Petersen, S. V.; Laursen, B. W.; Arenz, M.; Qiu, X. H.; Vosch, T.; Nørgaard, K. Gold nanoparticles assembled with dithiocarbamate-anchored molecular wires. Sci. Rep. 2015, 5, 15273.

    Article  Google Scholar 

  14. Fujii, S.; Matsuura, T.; Sunami, T.; Nishikawa, T.; Kazuta, Y.; Yomo, T. Liposome display for in vitro selection and evolution of membrane proteins. Nat. Protoc. 2014, 9, 1578–1591.

    Article  Google Scholar 

  15. Orozco, A. F.; Lewis, D. E. Flow cytometric analysis of circulating microparticles in plasma. Cytometry A 2010, 77, 502–514.

    Article  Google Scholar 

  16. Pospichalova, V.; Svoboda, J.; Dave, Z.; Kotrbova, A.; Kaiser, K.; Klemova, D.; Ilkovics, L.; Hampl, A.; Crha, I.; Jandakova, E. et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J. Extracell. Vesicles 2015, 4, 25530.

    Google Scholar 

  17. Simonsen, J. B. A liposome-based size calibration method for measuring microvesicles by flow cytometry. J. Thromb. Haemost. 2016, 14, 186–190.

    Article  Google Scholar 

  18. Temmerman, K.; Nickel, W. A novel flow cytometric assay to quantify interactions between proteins and membrane lipids. J. Lipid Res. 2009, 50, 1245–1254.

    Article  Google Scholar 

  19. Zucker, R. M.; Ortenzio, J. N. R.; Boyes, W. K. Characterization, detection, and counting of metal nanoparticles using flow cytometry. Cytometry A 2016, 89, 169–183.

    Article  Google Scholar 

  20. Zhu, S. B.; Yang, L. L.; Long, Y.; Gao, M.; Huang, T. X.; Hang, W.; Yan, X. M. Size differentiation and absolute quantification of gold nanoparticles via single particle detection with a laboratory-built high-sensitivity flow cytometer. J. Am. Chem. Soc. 2010, 132, 12176–12178.

    Article  Google Scholar 

  21. Zhu, S. B.; Ma, L.; Wang, S.; Chen, C. X.; Zhang, W. Q.; Yang, L. L.; Hang, W.; Nolan, J. P.; Wu, L. N.; Yan, X. M. Light-scattering detection below the level of single fluorescent molecules for high-resolution characterization of functional nanoparticles. ACS Nano 2014, 8, 10998–11006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jens B. Simonsen or Kasper Nørgaard.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonsen, J.B., Reeler, N.E.A., Fossum, A. et al. Quantifying and sorting of gold nanoparticle dimers from complex reaction mixtures using flow cytometry. Nano Res. 9, 3093–3098 (2016). https://doi.org/10.1007/s12274-016-1192-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1192-9

Keywords

Navigation