Skip to main content
Log in

The coupling influence of UV illumination and strain on the surface potential distribution of a single ZnO micro/nano wire

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Interface/surface properties play an important role in the development of most electronic devices. In particular, nanowires possess large surface areas that create new challenges for their optoelectronic applications. Here, we demonstrated that the piezoelectric field and UV laser illumination modulate the surface potential distribution of a bent ZnO wire by the Kelvin probe force microscopy technology. Experiments showed that the surface potential distribution was changed by strain. The difference of surface potential between the outer/inner sides of the ZnO wire increased with increasing strain. Under UV laser illumination, the difference of surface potential between the outer/inner sides of the ZnO wire increased with increasing strain and illumination time. The origin of the observed phenomenon was discussed in terms of the energy band diagram of the bent wire and adsorption/desorption theory. It is suggested that the change of surface potential can be attributed to the uneven distribution of the carrier density across the wire deduced by the piezoelectric effect and surface adsorption/desorption of oxygen ions. This study provides an important insight into the surface and piezoelectric effects on the surface potential and can help optimize the performance of electronic and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, S.; Wu, W. W.; Qin, Y.; Cui, N. Y.; Bayerl, D. J.; Wang, X. D. High-performance integrated ZnO nanowire UV sensors on rigid and flexible substrates. Adv. Funct. Mater. 2011, 21, 4464–4469.

    Article  Google Scholar 

  2. Look, D. C. Recent advances in ZnO materials and devices. Mater. Sci. Eng. B 2001, 80, 383–387.

    Article  Google Scholar 

  3. Wang, Z. L.; Wu, W. Z. Piezotronics and piezo-phototronics: Fundamentals and applications. Natl. Sci. Rev. 2014, 1, 62–90.

    Article  Google Scholar 

  4. Nesakumar, N.; Sethuraman, S.; Krishnan, U. M.; Rayappan, J. B. B. Electrochemical acetylcholinesterase biosensor based on ZnO nanocuboids modified platinum electrode for the detection of carbosulfan in rice. Biosens. Bioelectron. 2016, 77, 1070–1077.

    Article  Google Scholar 

  5. Qi, J. J.; Hu, X. F.; Wang, Z. Z.; Li, X.; Liu, W.; Zhang, Y. A self-powered ultraviolet detector based on a single ZnO microwire/p-Si film with double heterojunctions. Nanoscale 2014, 6, 6025–6029.

    Article  Google Scholar 

  6. Alenezi, M. R.; Henley, S. J.; Silva, S. R. P. On-chip fabrication of high performance nanostructured ZnO UV detectors. Sci. Rep. 2015, 5, 8516.

    Article  Google Scholar 

  7. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.

    Article  Google Scholar 

  8. Kawawaki, T.; Wang, H. B.; Kubo, T.; Saito, K.; Nakazaki, J.; Segawa, H.; Tatsuma, T. Efficiency enhancement of PbS quantum dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes. ACS Nano 2015, 9, 4165–4172.

    Article  Google Scholar 

  9. Bie, Y. Q.; Liao, Z. M.; Zhang, H. Z.; Li, G. R.; Ye, Y.; Zhou, Y. B.; Xu, J.; Qin, Z. X.; Dai, L.; Yu, D. P. Selfpowered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions. Adv. Mater. 2011, 23, 649–653.

    Article  Google Scholar 

  10. Ren, X. L.; Zhang, X. H.; Liu, N. S.; Wen, L.; Ding, L. W.; Ma, Z. W.; Su, J.; Li, L. Y.; Han, J. B.; Gao, Y. H. White light-emitting diode from Sb-doped p-ZnO nanowire arrays/n-GaN film. Adv. Funct. Mater. 2015, 25, 2182–2188.

    Article  Google Scholar 

  11. Lu, S. N.; Qi, J. J.; Liu, S.; Zhang, Z.; Wang, Z. Z.; Lin, P.; Liao, Q. L.; Liang, Q. J.; Zhang, Y. Piezotronic interface engineering on ZnO/Au-based Schottky junction for enhanced photoresponse of a flexible self-powered UV detector. ACS Appl. Mat. Interfaces 2014, 6, 14116–14122.

    Article  Google Scholar 

  12. Shi, J.; Zhao, P.; Wang, X. D. Piezoelectric-polarizationenhanced photovoltaic performance in depleted-heterojunction quantum-dot solar cells. Adv. Mater. 2013, 25, 916–921.

    Article  Google Scholar 

  13. Bao, R. R.; Wang, C. F.; Dong, L.; Yu, R. M.; Zhao, K.; Wang, Z. L.; Pan, C. F. Flexible and controllable piezophototronic pressure mapping sensor matrix by ZnO NW/ppolymer LED array. Adv. Funct. Mater. 2015, 25, 2884–2891.

    Article  Google Scholar 

  14. Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y.-H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.

    Article  Google Scholar 

  15. Wang, Z. N.; Yu, R. M.; Pan, C. F.; Liu, Y.; Ding, Y.; Wang, Z. L. Piezo-phototronic UV/visible photosensing with optical-fiber-nanowire hybridized structures. Adv. Mater. 2015, 27, 1553–1560.

    Article  Google Scholar 

  16. Soudi, A.; Dhakal, P.; Gu, Y. Diameter dependence of the minority carrier diffusion length in individual ZnO nanowires. Appl. Phys. Lett. 2010, 96, 253115.

    Article  Google Scholar 

  17. Jing, L. Q.; Sun, X. J.; Shang, J.; Cai, W. M.; Xu, Z. L.; Du, Y. G.; Fu, H. G. Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis. Sol. Energ. Mat. Sol. C. 2003, 79, 133–151.

    Article  Google Scholar 

  18. Zhang, Z.; Liao, Q. L.; Yu, Y. H.; Wang, X. D.; Zhang, Y. Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering. Nano Energy 2014, 9, 237–244.

    Article  Google Scholar 

  19. Lin, P.; Chen, X.; Yan, X. Q.; Zhang, Z.; Yuan, H. G.; Li, P. F.; Zhao, Y. G.; Zhang, Y. Enhanced photoresponse of Cu2O/ZnO heterojunction with piezo-modulated interface engineering. Nano Res. 2014, 7, 860–868.

    Article  Google Scholar 

  20. Schuster, F.; Laumer, B.; Zamani, R. R.; Magén, C.; Morante, J. R.; Arbiol, J.; Stutzmann, M. p-GaN/n-ZnO heterojunction nanowires: Optoelectronic properties and the role of interface polarity. ACS Nano 2014, 8, 4376–4384.

    Article  Google Scholar 

  21. Wu, W. Z.; Pan, C. F.; Zhang, Y.; Wen, X. N.; Wang, Z. L. Piezotronics and piezo-phototronics—From single nanodevices to array of devices and then to integrated functional system. Nano Today 2013, 8, 619–642.

    Article  Google Scholar 

  22. Kathalingam, A.; Valanarasu, S.; Senthilkumar, V.; Rhee, J.-K. Piezo and photoelectric coupled nanogenerator using CdSe quantum dots incorporated ZnO nanowires in ITO/ZnO NW/Si structure. Mater. Chem. Phys. 2013, 138, 262–269.

    Article  Google Scholar 

  23. Han, X. L.; Kou, L. Z.; Lang, X. L.; Xia, J. B.; Wang, N.; Qin, R.; Lu, J.; Xu, J.; Liao, Z. M.; Zhang, X. Z. et al. Electronic and mechanical coupling in bent ZnO nanowires. Adv. Mater. 2009, 21, 4937–4941.

    Article  Google Scholar 

  24. Fu, X. W.; Su, C.; Fu, Q.; Zhu, X. L.; Zhu, R.; Liu, C. P.; Liao, Z. M.; Xu, J.; Guo, W. L.; Feng, J. et al. Tailoring exciton dynamics by elastic strain-gradient in semiconductors. Adv. Mater. 2014, 26, 2572–2579.

    Article  Google Scholar 

  25. Wang, Z. Z.; Gu, Y. S.; Qi, J. J.; Lu, S. N.; Li, P. F.; Lin, P.; Zhang, Y. Size dependence and UV irradiation tuning of the surface potential in single conical ZnO nanowires. RSC Adv. 2015, 5, 42075–42080.

    Article  Google Scholar 

  26. Bayerl, D. J.; Wang, X. D. Three-dimensional kelvin probe microscopy for characterizing in-plane piezoelectric potential of laterally deflected ZnO micro-/nanowires. Adv. Funct. Mater. 2012, 22, 652–660.

    Article  Google Scholar 

  27. Xu, S. G.; Guo, W. H.; Du, S. W.; Loy, M. M. T.; Wang, N. Piezotronic effects on the optical properties of ZnO nanowires. Nano Lett. 2012, 12, 5802–5807.

    Article  Google Scholar 

  28. Shi, J.; Starr, M. B.; Wang, X. D. Band structure engineering at heterojunction interfaces via the piezotronic effect. Adv. Mater. 2012, 24, 4683–4691.

    Article  Google Scholar 

  29. Fu, X. W.; Liao, Z. M.; Xu, J.; Wu, X. S.; Guo, W. L.; Yu, D. P. Improvement of ultraviolet photoresponse of bent ZnO microwires by coupling piezoelectric and surface oxygen adsorption/desorption effects. Nanoscale 2013, 5, 916–920.

    Article  Google Scholar 

  30. Teke, A.; Özgür, Ü.; Dogan, S.; Gu, X.; Morkoç, H.; Nemeth, B.; Nause, J.; Everitt, H. O. Excitonic fine structure and recombination dynamics in single-crystalline ZnO. Phys. Rev. B 2004, 70, 195207.

    Article  Google Scholar 

  31. Look, D. C.; Reynolds, D. C.; Litton, C. W.; Jones, R. L.; Eason, D. B.; Cantwell, G. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys. Lett. 2002, 81, 1830–1832.

    Article  Google Scholar 

  32. Gao, Y. F.; Wang, Z. L. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 2007, 7, 2499–2505.

    Article  Google Scholar 

  33. Kaidashev, E. M.; Lorenz, M.; Von Wenckstern, H.; Rahm, A.; Semmelhack, H.-C.; Han, K.-H.; Benndorf, G.; Bundesmann, C.; Hochmuth, H.; Grundmann, M. High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Appl. Phys. Lett. 2003, 82, 3901–3903.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junjie Qi or Yue Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Qi, J., Li, F. et al. The coupling influence of UV illumination and strain on the surface potential distribution of a single ZnO micro/nano wire. Nano Res. 9, 2572–2580 (2016). https://doi.org/10.1007/s12274-016-1143-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1143-5

Keywords

Navigation