Skip to main content
Log in

Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hexagonal ultrathin WO3 nano-ribbons (HUWNRs) of subnanometer thicknesses, 2–5 nm widths, and lengths of up to several micrometers were prepared by a solvothermal method. The as-prepared HUWNRs grow along the [001] direction, and the main exposed facet is the (120) crystal plane. The HUWNRs exhibit good electrochemical performance as an anode material in lithium ion batteries because of their unique structure. It is believed that these unique materials may be applied in many fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cademartiri, L.; Ozin, G. A. Ultrathin nanowires—A materials chemistry perspective. Adv. Mater. 2009, 21, 1013–1020.

    Article  Google Scholar 

  2. Hong, X.; Wang, D. S.; Yu, R.; Yan, H.; Sun, Y.; He, L.; Niu, Z. Q.; Peng, Q.; Li, Y. D. Ultrathin Au–Ag bimetallic nanowires with Coulomb blockade effects. Chem. Commun. 2011, 47, 5160–5162.

    Article  Google Scholar 

  3. Hu, S.; Wang, X. Ultrathin nanostructures: Smaller size with new phenomena. Chem. Soc. Rev. 2013, 42, 5577–5594.

    Article  Google Scholar 

  4. Wang, P. P.; Yang, Y.; Zhuang, J.; Wang, X. Self-adjustable crystalline inorganic nanocoils. J. Am. Chem. Soc. 2013, 135, 6834–6837.

    Article  Google Scholar 

  5. Lee, K.; Seo, W. S.; Park, J. T. Synthesis and optical properties of colloidal tungsten oxide nanorods. J. Am. Chem. Soc. 2003, 125, 3408–3409.

    Article  Google Scholar 

  6. Li, Y.; Bando, Y.; Golberg, D. Quasi-aligned single-crystalline W18O49 nanotubes and nanowires. Adv. Mater. 2003, 15, 1294–1296.

    Article  Google Scholar 

  7. Suzuki, K.; Watanabe, T.; Murahashi, S. I. Aerobic oxidation of primary amines to oximes catalyzed by DPPH and WO3/Al2O3. Angew. Chem., Int. Ed. 2008, 47, 2079–2081.

    Article  Google Scholar 

  8. Zhang, X. H.; Gong, L.; Liu, K.; Cao, Y. Z.; Xiao, X.; Sun, W. M.; Hu, X. J.; Gao, Y. H.; Chen, J.; Zhou, J. et al. Tungsten oxide nanowires grown on carbon cloth as a flexible cold cathode. Adv. Mater. 2010, 22, 5292–5296.

    Article  Google Scholar 

  9. Li, W.; Xia, F.; Qu, J.; Li, P.; Chen, D. H.; Chen, Z.; Yu, Y.; Lu, Y.; Caruso, R. A.; Song, W. G. Versatile inorganic–organic hybrid WOx-ethylenediamine nanowires: Synthesis, mechanism and application in heavy metal ion adsorption and catalysis. Nano Res. 2014, 7, 903–916.

    Article  Google Scholar 

  10. Xi, G. C.; Ouyang, S. X.; Li, P.; Ye, J. H.; Ma, Q.; Su, N.; Bai, H.; Wang, C. Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew. Chem., Int. Ed. 2012, 51, 2395–2399.

    Article  Google Scholar 

  11. Liu, J. C.; Margeat, O.; Dachraoui, W.; Liu, X. J.; Fahlman, M.; Ackermann, J. Gram-scale synthesis of ultrathin tungsten oxide nanowires and their aspect ratio-dependent photocatalytic activity. Adv. Funct. Mater. 2014, 24, 6029–6037.

    Article  Google Scholar 

  12. He, J.; Liu, H. L.; Xu, B.; Wang, X. Highly flexible sub-1 nm tungsten oxide nanobelts as efficient desulfurization catalysts. Small 2015, 11, 1144–1149.

    Article  Google Scholar 

  13. Reis, K. P.; Ramanan, A.; Whittingham, M. S. Hydrothermal synthesis of sodium tungstates. Chem. Mater. 1990, 2, 219–221.

    Article  Google Scholar 

  14. Wang, X. B.; Tian, F. H.; Zhao, W. W.; Fu, A. P.; Zhao, L. H. Surface stabilization of hexagonal WO3 by non-metallic atoms: A DFT study. Comp. Mater. Sci. 2013, 68, 218–221.

    Article  Google Scholar 

  15. Huang, K.; Zhang, Q. Rechargeable lithium battery based on a single hexagonal tungsten trioxide nanowire. Nano Energy 2012, 1, 172–175.

    Article  Google Scholar 

  16. Szilágyi, I. M.; Wang, L. S.; Gouma, P. I.; Balázsi, C.; Madarász, J.; Pokol, G. Preparation of hexagonal WO3 from hexagonal ammonium tungsten bronze for sensing NH3. Mater. Res. Bull. 2009, 44, 505–508.

    Article  Google Scholar 

  17. Gu, Z. J.; Li, H. Q.; Zhai, T. Y.; Yang, W. S.; Xia, Y. Y.; Ma, Y.; Yao, J. N. Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals. J. Solid State Chem. 2007, 180, 98–105.

    Article  Google Scholar 

  18. Baserga, A.; Russo, V.; Di Fonzo, F.; Bailini, A.; Cattaneo, D.; Casari, C. S.; Bassi, A. L.; Bottani, C. E. Nanostructured tungsten oxide with controlled properties: Synthesis and Raman characterization. Thin Solid Films 2007, 515, 6465–6469.

  19. Ha, J. H.; Muralidharan, P.; Kim, D. K. Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts. J. Alloy Compd. 2009, 475, 446–451.

    Article  Google Scholar 

  20. Lin, F.; Li, C. P.; Chen, G.; Tenent, R. C.; Wolden, C. A.; Gillaspie, D. T.; Dillon, A. C.; Richards, R. M.; Engtrakul, C. Low-temperature ozone exposure technique to modulate the stoichiometry of WOx nanorods and optimize the electrochromic performance. Nanotechnology 2012, 23, 255601.

  21. Szilágyi, I. M.; Fórizs, B.; Rosseler, O.; Szegedi, Á.; Németh, P.; Király, P.; Tárkányi, G.; Vajna, B.; Varga-Josepovits, K.; László, K. et al. WO3 photocatalysts: Influence of structure and composition. J. Catal. 2012, 294, 119–127.

    Article  Google Scholar 

  22. Nogueira, H. I. S.; Cavaleiro, A. M. V.; Rocha, J.; Trindade, T.; de Jesus, J. D. P. Synthesis and characterization of tungsten trioxide powders prepared from tungstic acids. Mater. Res. Bull. 2004, 39, 683–693.

    Article  Google Scholar 

  23. Polleux, J.; Pinna, N.; Antonietti, M.; Niederberger, M. Growth and assembly of crystalline tungsten oxide nanostructures assisted by bioligation. J. Am. Chem. Soc. 2005, 127, 15595–15601.

    Article  Google Scholar 

  24. Firkala, T.; Fórizs, B.; Drotár, E.; Tompos, A.; Tóth, A. L.; Varga-Josepovits, K.; László, K.; Leskelä, M.; Szilágyi, I. M. Influence of the support crystal structure of WO3/Au catalysts in COoxidation. Catal. Lett. 2014, 144, 831–836.

    Article  Google Scholar 

  25. Santato, C.; Odziemkowski, M.; Ulmann, M.; Augustynski, J. Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications. J. Am. Chem. Soc. 2001, 123, 10639–10649.

    Article  Google Scholar 

  26. Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, E170–E192.

    Article  Google Scholar 

  27. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

    Article  Google Scholar 

  28. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Article  Google Scholar 

  29. Komaba, S.; Kumagai, N.; Kato, K.; Yashiro, H. Hydrothermal synthesis of hexagonal tungsten trioxide from Li2WO4 solution and electrochemical lithium intercalation into the oxide. Solid State Ionics 2000, 135, 193–197.

    Article  Google Scholar 

  30. Pervez, S. A.; Kim, D.; Doh, C. H.; Farooq, U.; Choi, H. Y.; Choi, J. H. Anodic WO3 mesosponge @ carbon: A novel binder-less electrode for advanced energy storage devices. ACS Appl. Mater. Interfaces 2015, 7, 7635-7643.

  31. Duan, X. C.; Xiao, S. H.; Wang, L. L.; Huang, H.; Liu, Y.; Li, Q. H.; Wang, T. H. Ionic liquid-modulated preparation of hexagonal tungsten trioxide mesocrystals for lithium-ion batteries. Nanoscale 2015, 7, 2230–2234.

    Article  Google Scholar 

  32. Kim, D. M.; Kim, S. J.; Lee, Y. W.; Kwak, D. H.; Park, H. C.; Kim, M. C.; Hwang, B. M.; Lee, S.; Choi, J. H.; Hong, S. et al. Two-dimensional nanocomposites based on tungsten oxide nanoplates and graphene nanosheets for high-performance lithium ion batteries. Electrochim. Acta 2015, 163, 132–139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Chen.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, C., Xiao, X., Chen, Z. et al. Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries. Nano Res. 9, 435–441 (2016). https://doi.org/10.1007/s12274-015-0924-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0924-6

Keywords

Navigation