Skip to main content
Log in

One-pot synthesis of Bi2Se3 nanostructures with rationally tunable morphologies

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Shape control has proven to be a powerful and versatile means of tailoring the properties of Bi2Se3 nanostructures for a wide variety of applications. Here, three different Bi2Se3 nanostructures, i.e., spiral-type nanoplates, smooth nanoplates, and dendritic nanostructures, were prepared by manipulating the supersaturation level in the synthetic system. This mechanism study indicated that, at low supersaturation, defects in the crystal growth could cause a step edge upon which Bi2Se3 particles were added continuously, leading to the formation of spiral-type nanoplates. At intermediate supersaturation, the aggregation of amorphous Bi2Se3 particles and subsequent recrystallization resulted in the formation of smooth nanoplates. Furthermore, at high supersaturation, polycrystalline Bi2Se3 cores formed initially, on which anisotropic growth of Bi2Se3 occurred. This work not only advances our understanding of the growth mechanism but also offers a new approach to control the morphology of Bi2Se3 nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moore, J. E. The birth of topological insulators. Nature 2010, 464, 194–198.

    Article  Google Scholar 

  2. Hasan, M. Z.; Kane, C. L. Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.

    Article  Google Scholar 

  3. Taskin, A. A.; Sasaki, S.; Segawa, K.; Ando, Y. Achieving surface quantum oscillations in topological insulator thin films of Bi2Se3. Adv. Mater. 2012, 24, 5581–5585.

    Article  Google Scholar 

  4. Peng, H. L.; Dang, W. H.; Cao, J.; Chen, Y. L.; Wu, D.; Zheng, W. S.; Li, H.; Shen, Z. X.; Liu, Z. F. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 2012, 4, 281–286.

    Article  Google Scholar 

  5. Qi, X. L.; Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110.

    Article  Google Scholar 

  6. Kong, D. S.; Cui, Y. Opportunities in chemistry and materials science for topological insulators and their nanostructures. Nat. Chem. 2011, 3, 845–849.

    Article  Google Scholar 

  7. Müchler, L.; Casper, F.; Yan, B. H.; Chadov, S.; Felser, C. Topological insulators and thermoelectric materials. Phys. Status Solidi RRL 2013, 7, 91–100.

    Article  Google Scholar 

  8. Wyckoff, R. W. G. Crystal Structures; Krieger: Malabar, FL,1986.

    Google Scholar 

  9. Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

    Article  Google Scholar 

  10. Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398–402.

    Article  Google Scholar 

  11. Zareapour, P.; Hayat, A.; Zhao, S. Y. F.; Kreshchuk, M.; Jain, A.; Kwok, D. C.; Lee, N.; Cheong, S. W.; Xu, Z. J.; Yang, A. et al. Proximity-induced high-temperature superconductivity in the topological insulators Bi2Se3 and Bi2Te3. Nat. Commun. 2012, 3, 1056.

    Article  Google Scholar 

  12. Sun, L. P.; Lin, Z. Q.; Peng, J.; Weng, J.; Huang, Y. Z.; Luo, Z. Q. Preparation of few-layer bismuth selenide by liquidphase- exfoliation and its optical absorption properties. Sci. Rep. 2014, 4, 4794.

    Google Scholar 

  13. Zhang, X.; Wang, J.; Zhang, S. C. Topological insulators for high-performance terahertz to infrared applications. Phys. Rev. B 2011, 82, 245107.

    Article  Google Scholar 

  14. Zhao, C. J.; Zou, Y. H.; Chen, Y.; Wang, Z. T.; Lu, S. B.; Zhang, H.; Wen, S. C.; Tang, D. Y. Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker. Opt. Express 2012, 20, 27888–27895.

    Article  Google Scholar 

  15. Li, J.; Jiang, F.; Yang, B.; Song, X. R.; Liu, Y.; Yang, H. H.; Cao, D. R.; Shi, W. R.; Chen, G. N. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy. Sci. Rep. 2013, 3, 1998.

    Google Scholar 

  16. Sun, Y. F.; Cheng, H.; Gao, S.; Liu, Q. H.; Sun, Z. H.; Xiao, C.; Wu, C. Z.; Wei, S. Q.; Xie, Y. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting. J. Am. Chem. Soc. 2012, 134, 20294–20297.

    Article  Google Scholar 

  17. Soni, A.; Zhao, Y. Y.; Yu, L. G.; Aik, M. K. K.; Dresselhaus, M. S.; Xiong, Q. H. Enhanced thermoelectric properties of solution grown Bi2Te3–xSex nanoplatelet composites. Nano Lett. 2012, 12, 1203–1209.

    Article  Google Scholar 

  18. Min, Y.; Roh, J. W.; Yang, H.; Park, M.; Kim, S. I.; Hwang, S.; Lee, S. M.; Lee, K. H.; Jeong, U. Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites. Adv. Mater. 2013, 25, 1425–1429.

    Article  Google Scholar 

  19. Yu, J. K.; Mitrovic, S.; Than, D.; Varghese, J.; Heath, J. R. Reduction of thermal conductivity in phononic nanomesh structures. Nat. Nanotechnol. 2010, 5, 718–721.

    Article  Google Scholar 

  20. Son, J. S.; Park, K.; Han, M. K.; Kang, C.; Park, S. G.; Kim, J. H.; Kim, W.; Kim, S. J.; Hyeon, T. Large-scale synthesis and characterization of the size-dependent thermoelectric properties of uniformly sized bismuth nanocrystals. Angew. Chem., Int. Ed. 2011, 123, 1399–1402.

    Article  Google Scholar 

  21. Zuev, Y. M.; Lee, J. S.; Galloy, C.; Park, H.; Kim, P. Diameter dependence of the transport properties of antimony telluride nanowires. Nano Lett. 2010, 10, 3037–3040.

    Article  Google Scholar 

  22. Dirmyer, M. R.; Martin, J.; Nolas, G. S.; Sen, A.; Badding, J. V. Thermal and electrical conductivity of size-tuned bismuth telluride nanoparticles. Small 2009, 5, 933–937.

    Article  Google Scholar 

  23. Linder, J.; Yokoyama, T.; Sudbø, A. Anomalous finite size effects on surface states in the topological insulator Bi2Se3. Phys. Rev. B 2009, 80, 205401.

    Article  Google Scholar 

  24. Zhang, Y.; He, K.; Chang, C. Z.; Song, C. L.; Wang, L. L.; Chen, X.; Jia, J. F.; Fang, Z.; Dai, X.; Shan, W. Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.

    Article  Google Scholar 

  25. Fan, H.; Zhang, S. X.; Ju, P.; Su, H. C.; Ai, S. Y. Flowerlike Bi2Se3 nanostructures: Synthesis and their application for the direct electrochemistry of hemoglobin and H2O2 detection. Electrochim. Acta 2012, 64, 171–176.

    Article  Google Scholar 

  26. Yao, J.; Koski, K. J.; Luo, W. D.; Cha, J. J.; Hu, L. B.; Kong, D. S.; Narasimhan, V. K.; Huo, K. F.; Cui, Y. Optical transmission enhacement through chemically tuned twodimensional bismuth chalcogenide nanoplates. Nat. Commun. 2014, 5, 5670.

    Article  Google Scholar 

  27. Xu, S.; Zhao, W. B.; Hong, J. M.; Zhu, J. J.; Chen, H. Y. Photochemical synthesis of Bi2Se3 nanosphere and nanorods. Mater. Lett. 2005, 59, 319–321.

    Article  Google Scholar 

  28. Zhuang, A. W.; Zhao, Y. Z.; Liu, X. L.; Xu, M. R.; Wang, Y. C.; Jeong, U.; Wang, X. P.; Zeng, J. Controlling the lateral and vertical dimensions of Bi2Se3 nanoplates via seeded growth. Nano Res. 2015, 8, 246–256.

    Article  Google Scholar 

  29. Min, Y.; Moon, G. D.; Kim, B. S.; Lim, B.; Kim, J. S.; Kang, C. Y.; Jeong, U. Quick, controlled synthesis of ultrathin Bi2Se3 nanodiscs and nanosheets. J. Am. Chem. Soc. 2012, 134, 2872–2875.

    Article  Google Scholar 

  30. Zhang, J.; Peng, Z. P.; Soni, A.; Zhao, Y. Y.; Xiong, Y.; Peng, B.; Wang, J. B.; Dresselhaus, M. S.; Xiong, Q. H. Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett. 2011, 11, 2407–2414.

    Article  Google Scholar 

  31. Sun, Z. L.; Liufu, S.; Chen, X. H.; Chen, L. D. Controllable synthesis and electrochemical hydrogen storage properties of Bi2Se3 architectural structures. Chem. Commun. 2010, 46, 3101-3103.

    Article  Google Scholar 

  32. Zhuang, A. W.; Li, J. J.; Wang, Y. C.; Wen, X.; Lin, Y.; Xiang, B.; Wang, X. P.; Zeng, J. Screw-dislocation-driven bidirectional spiral growth of Bi2Se3 nanoplates. Angew. Chem., Int. Ed. 2014, 126, 6543–6547.

    Article  Google Scholar 

  33. Zhou, J. H.; Zeng, J.; Grant, J.; Wu, H. K.; Xia, Y. N. On-chip screening of experimental conditions for the synthesis of noble-metal nanostructures with different morphologies. Small 2011, 7, 3308–3316.

    Article  Google Scholar 

  34. Jin, S.; Bierman, M. J.; Morin, S. A. A new twist on nanowire formation: Screw-dislocation-driven growth of nanowires and nanotubes. J. Phys. Chem. Lett. 2010, 1, 1472–1480.

    Article  Google Scholar 

  35. Penn, R. L.; Banfield, J. F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 1998, 281, 969–971.

    Article  Google Scholar 

  36. Hirth, J. P.; Lothe, J. Theory of Dislocations; MaGraw-Hill: New York, 1968.

    Google Scholar 

  37. Burton, W. K.; Cabrera, N.; Frank, F. C. Role of dislocations in crystal growth. Nature 1949, 163, 398–399.

    Article  Google Scholar 

  38. Xia, Y. N.; Xia, X. H.; Peng, H. C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947–7966.

    Article  Google Scholar 

  39. Meng, F.; Morin, S. A.; Forticaux, A.; Jin, S. Screw dislocation driven growth of nanomaterials. Acc. Chem. Res. 2013, 46, 1616–1626.

    Article  Google Scholar 

  40. Markov, I. V. Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy; World Scientific Publishing Co. Pte. Ltd.: Singapore, 1995.

    Book  Google Scholar 

  41. Zhuo, R. F.; Feng, H. T.; Chen, J. T.; Yan, D.; Feng, J. J.; Li, H. J.; Geng, B. S.; Cheng, S.; Xu, X. Y.; Yan, P. X. Multistep synthesis, growth mechanism, optical, and microwave absorption properties of ZnO dendritic nanostructures. J. Phys. Chem. C 2008, 112, 11767–11775.

    Article  Google Scholar 

  42. Shevchenko, E. V.; Talapin, D. V.; Schnablegger, H.; Kornowski, A.; Festin, Ö.; Svedlindh, P.; Haase, M.; Weller, H. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: The role of nucleation rate in size control of CoPt3 nanocrystals. J. Am. Chem. Soc. 2003, 125, 9090–9101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Ma or Jie Zeng.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Xu, J., Fang, Z. et al. One-pot synthesis of Bi2Se3 nanostructures with rationally tunable morphologies. Nano Res. 8, 3612–3620 (2015). https://doi.org/10.1007/s12274-015-0861-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0861-4

Keywords

Navigation