Skip to main content
Log in

Nanostructure and mechanical properties of the osteocyte lacunar-canalicular network-associated bone matrix revealed by quantitative nanomechanical mapping

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Osteocytes are the main bone cells embedded in the bone matrix where they form a large surface-area network called the lacunar-canalicular network (LCN), interconnecting their resident spaces with the lacunae by the canaliculi. Increasing evidence points toward osteocytes playing a pivotal role in maintaining bone quality. On the one hand, osteocytes transmit mechanical strain and microenvironmental signals through the LCN to regulate the activity of osteoblasts and osteoclasts; on the other hand, osteocytes are suggested to be able to remodel the LCN-associated bone matrix. However, due to the challenges involved in the assessment and characterization of the LCN-associated bone matrix, little is known about its structure and the corresponding mechanical properties. In this work, we used quantitative nanomechanical mapping, backscattered electron imaging, and nanoindentation to characterize the LCN-associated bone matrix. The results show that the techniques can be used to probe the LCN-associated bone matrix. Nanoindentation and quantitative mechanical mapping reveal spatially inhomogeneous mechanical properties of the bone matrix associated with the osteocyte lacunae and canaliculi. The obtained nano-topography and corresponding nano-mechanical maps reveal altered mechanical properties in the immediate vicinity of the osteocyte lacunae and canaliculi, which cannot be explained solely by the topographic change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonewald, L. F. The amazing osteocyte. J. Bone Miner. Res. 2011, 26, 229–238.

    Article  Google Scholar 

  2. Teti, A.; Zallone, A. Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bon. 2009, 44, 11–16.

  3. Vatsa, A.; Breuls, R. G.; Semeins, C. M.; Salmon, P. L.; Smit, T. H.; Klein-Nulend, J. Osteocyte morphology in fibula and calvaria—Is there a role for mechanosensing? Bon. 2008, 43, 452–458.

    Article  Google Scholar 

  4. Dong, P.; Haupert, S.; Hesse, B.; Langer, M.; Gouttenoire, P. J.; Bousson, V.; Peyrin, F. 3D osteocyte lacunar morphometric properties and distributions in human femoral cortical bone using synchrotron radiation micro-CT images. Bon. 2014, 60, 172–185.

    Article  Google Scholar 

  5. McCreadie, B. R.; Hollister, S. J.; Schaffler, M. B.; Goldstein, S. A. Osteocyte lacuna size and shape in women with and without osteoporotic fracture. J. Biomech. 2004, 37, 563–572.

    Article  Google Scholar 

  6. Varga, P.; Hesse, B.; Langer, M.; Schrof, S.; Männicke, N.; Suhonen, H.; Pacureanu, A.; Pahr, D.; Peyrin, F.; Raum, K. Synchrotron X-ray phase nano-tomography-based analysis of the lacunar–canalicular network morphology and its relation to the strains experienced by osteocytes in situ as predicted by case-specific finite element analysis. Biomech. Model. Mechanobiol. 2014, 14, 267–282.

    Article  Google Scholar 

  7. You, L. D.; Weinbaum, S.; Cowin, S. C.; Schaffler, M. B. Ultrastructure of the osteocyte process and its pericellular matrix. Anat. Rec. Part. 2004, 278A, 505–513.

    Article  Google Scholar 

  8. Reznikov, N.; Shahar, R.; Weiner, S. Three-dimensional structure of human lamellar bone: The presence of two different materials and new insights into the hierarchical organization. Bon. 2014, 59, 93–104.

    Article  Google Scholar 

  9. Schneider, P.; Meier, M.; Wepf, R.; Muller, R. Towards quantitative 3D imaging of the osteocyte lacuno-canalicular network. Bon. 2010, 47, 848–858.

    Article  Google Scholar 

  10. Tang, S. Y.; Herber, R. P.; Ho, S. P.; Alliston, T. Matrix metalloproteinase–13 is required for osteocytic perilacunar remodeling and maintains bone fracture resistance. J. Bone Miner. Res. 2012, 27, 1936–1950.

    Article  Google Scholar 

  11. Lane, N. E.; Yao, W.; Balooch, M.; Nalla, R. K.; Balooch, G.; Habelitz, S.; Kinney, J. H.; Bonewald, L. F. Glucocorticoidtreated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo-treated or estrogen-deficient mice. J. Bone Miner. Res. 2006, 21, 466–476.

    Article  Google Scholar 

  12. Klein-Nulend, J.; Bakker, A. D.; Bacabac, R. G.; Vatsa, A.; Weinbaum, S. Mechanosensation and transduction in osteocytes. Bon. 2013, 54, 182–190.

    Article  Google Scholar 

  13. Tatsumi, S.; Ishii, K.; Amizuka, N.; Li, M. Q.; Kobayashi, T.; Kohno, K.; Ito, M.; Takeshita, S.; Ikeda, K. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007, 5, 464–475.

    Article  Google Scholar 

  14. Price, C.; Zhou, X. Z.; Li, W.; Wang, L. Y. Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: Direct evidence for loadinduced fluid flow. J. Bone Miner. Res. 2011, 26, 277–285.

    Article  Google Scholar 

  15. Bonewald, L. F.; Johnson, M. L. Osteocytes, mechanosensing and Wnt signaling. Bon. 2008, 42, 606–615.

    Article  Google Scholar 

  16. Poole, K. E. S.; van Bezooijen, R. L.; Loveridge, N.; Hamersma, H.; Papapoulos, S. E.; Löwik, C. W.; Reeve, J. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 2005, 19, 1842–1844.

    Google Scholar 

  17. Busse, B.; Djonic, D.; Milovanovic, P.; Hahn, M.; Püschel, K.; Ritchie, R. O.; Djuric, M.; Amling, M. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cel. 2010, 9, 1065–1075.

    Article  Google Scholar 

  18. Milovanovic, P.; Zimmermann, E. A.; Hahn, M.; Djonic, D.; Püschel, K.; Djuric, M.; Amling, M.; Busse, B. Osteocytic canalicular networks: Morphological implications for altered mechanosensitivity. ACS Nan. 2013, 7, 7542–7551.

    Article  Google Scholar 

  19. Bélanger, L. F. Osteocytic osteolysis. Calcif. Tissue Res. 1969/70, 4, 1–12.

    Article  Google Scholar 

  20. Qing, H.; Ardeshirpour, L.; Divieti Pajevic, P.; Dusevich, V.; Jähn, K.; Kato, S.; Wysolmerski, J.; Bonewald, L. F. Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J. Bone Miner. Res. 2012, 27, 1018–1029.

    Article  Google Scholar 

  21. Tazawa, K.; Hoshi, K.; Kawamoto, S.; Tanaka, M.; Ejiri, S.; Ozawa, H. Osteocytic osteolysis observed in rats to which parathyroid hormone was continuously administered. J. Bone Miner. Metab. 2004, 22, 524–529.

    Article  Google Scholar 

  22. Dierolf, M.; Menzel, A.; Thibault, P.; Schneider, P.; Kewish, C. M.; Wepf, R.; Bunk, O.; Pfeiffer, F. Ptychographic X-ray computed tomography at the nanoscale. Natur. 2010, 467, 436–439.

    Article  Google Scholar 

  23. Langer, M.; Pacureanu, A.; Suhonen, H.; Grimal, Q.; Cloetens, P.; Peyrin, F. X-Ray Phase nanotomography resolves the 3D human bone ultrastructure. PLoS On. 2012, 7, e35691.

    Article  Google Scholar 

  24. Skedros, J. G.; Bloebaum, R. D.; Bachus, K. N.; Boyce, T. M. The meaning of graylevels in backscattered electron images of bone. J. Biomed. Mater. Res. 1993, 27, 47–56.

    Article  Google Scholar 

  25. Sutton-Smith, P.; Beard, H.; Fazzalari, N. Quantitative backscattered electron imaging of bone in proximal femur fragility fracture and medical illness. J. Microsc. 2008, 229, 60–66.

    Article  Google Scholar 

  26. Reznikov, N.; Almany-Magal, R.; Shahar, R.; Weiner, S. Three-dimensional imaging of collagen fibril organization in rat circumferential lamellar bone using a dual beam electron microscope reveals ordered and disordered sub-lamellar structures. Bon. 2013, 52, 676–683.

    Article  Google Scholar 

  27. Reznikov, N.; Shahar, R.; Weiner, S. Bone hierarchical structure in three dimensions. Acta Biomater. 2014, 10, 3815–3826.

    Article  Google Scholar 

  28. Fratzl, P.; Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 2007, 52, 1263–1334.

    Article  Google Scholar 

  29. Weiner, S.; Wagner, H. D. The material bone: Structuremechanical function relations. Annu. Rev. Mater. Sci. 1998, 28, 271–298.

    Article  Google Scholar 

  30. Müller, D. J.; Dufrene, Y. F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechno. 2008, 3, 261–269.

    Article  Google Scholar 

  31. Thompson, J. B.; Kindt, J. H.; Drake, B.; Hansma, H. G.; Morse, D. E.; Hansma, P. K. Bone indentation recovery time correlates with bond reforming time. Natur. 2001, 414, 773–776.

    Article  Google Scholar 

  32. Fantner, G. E.; Hassenkam, T.; Kindt, J. H.; Weaver, J. C.; Birkedal, H.; Pechenik, L.; Cutroni, J. A.; Cidade, G. A. G.; Stucky, G. D.; Morse, D. E. et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat. Mater. 2005, 4, 612–616.

    Article  Google Scholar 

  33. Dufrene, Y. F.; Martinez-Martin, D.; Medalsy, I.; Alsteens, D.; Müller, D. J. Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat. Method. 2013, 10, 847–854.

    Article  Google Scholar 

  34. Dong, M. D.; Husale, S.; Sahin, O. Determination of protein structural flexibility by microsecond force spectroscopy. Nat. Nanotechnol. 2009, 4, 514–517.

    Article  Google Scholar 

  35. Wegmann, S.; Medalsy, I. D.; Mandelkow, E.; Müller, D. J. The fuzzy coat of pathological human Tau fibrils is a twolayered polyelectrolyte brush. Prog. Natl. Acad. Sci. US. 2013, 110, E313–E321.

    Article  Google Scholar 

  36. Zhang, S.; Andreasen, M.; Nielsen, J. T.; Liu, L.; Nielsen, E. H.; Song, J.; Ji, G.; Sun, F.; Skrydstrup, T.; Besenbacher, F. et al. Coexistence of ribbon and helical fibrils originating from hIAPP20–29 revealed by quantitative nanomechanical atomic force microscopy. Prog. Natl. Acad. Sci. US. 2013, 110, 2798–2803.

    Article  Google Scholar 

  37. Adamcik, J.; Lara, C.; Usov, I.; Jeong, J. S.; Ruggeri, F. S.; Dietler, G.; Lashuel, H. A.; Hamley, I. W.; Mezzenga, R. Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method. Nanoscal. 2012, 4, 4426–4429.

    Article  Google Scholar 

  38. Medalsy, I.; Hensen, U.; Muller, D. J. Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force–volume AFM. Angew. Chem., Int. Ed. 2011, 50, 12103–12108.

    Article  Google Scholar 

  39. Adamcik, J.; Berquand, A.; Mezzenga, R. Single-step direct measurement of amyloid fibrils stiffness by peak force quantitative nanomechanical atomic force microscopy. Appl. Phys. Lett. 2011, 98, 193701.

    Article  Google Scholar 

  40. Thomsen, J. S.; Christensen, L.; Vegger, J.; Nyengaard, J.; Brüel, A. Loss of bone strength is dependent on skeletal site in disuse osteoporosis in rats. Calcif. Tissue Int. 2012, 90, 294–306.

    Article  Google Scholar 

  41. Bach-Gansmo, F.; Irvine, S.; Brüel, A.; Thomsen, J.; Birkedal, H. Calcified cartilage islands in rat cortical bone. Calcif. Tissue Int. 2013, 92, 330–338.

    Article  Google Scholar 

  42. Roschger, P.; Fratzl, P.; Eschberger, J.; Klaushofer, K. Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bon. 1998, 23, 319–326.

    Article  Google Scholar 

  43. Gupta, H. S.; Stachewicz, U.; Wagermaier, W.; Roschger, P.; Wagner, H. D.; Fratzl, P. Mechanical modulation at the lamellar level in osteonal bone. J. Mater. Res. 2006, 21, 1913–1921.

    Article  Google Scholar 

  44. Brüel, A.; Olsen, J.; Birkedal, H.; Risager, M.; Andreassen, T. T.; Raffalt, A. C.; Andersen, J. E. T.; Thomsen, J. S. Strontium ranelate is incorporated into the fracture callus, but does not influence the mechanical strength of healing rat fractures. Calcif. Tissue Int. 2011, 88, 142–152.

    Article  Google Scholar 

  45. Oliver, W. C.; Pharr, G. M. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583.

    Article  Google Scholar 

  46. Rho, J. Y.; Tsui, T. Y.; Pharr, G. M. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterial. 1997, 18, 1325–1330.

    Article  Google Scholar 

  47. Hutter, J. L.; Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 1993, 64, 1868–1873.

    Article  Google Scholar 

  48. Carpentier, V. T.; Wong, J. Q.; Yeap, Y.; Gan, C.; Sutton- Smith, P.; Badiei, A.; Fazzalari, N. L.; Kuliwaba, J. S. Increased proportion of hypermineralized osteocyte lacunae in osteoporotic and osteoarthritic human trabecular bone: Implications for bone remodeling. Bon. 2012, 50, 688–694.

    Article  Google Scholar 

  49. Seto, J.; Gupta, H. S.; Zaslansky, P.; Wagner, H. D.; Fratzl, P. Tough lessons from bone: Extreme mechanical anisotropy at the mesoscale. Adv. Funct. Mater. 2008, 18, 1905–1911.

    Article  Google Scholar 

  50. Fratzl, P.; Gupta, H. S.; Fischer, F. D.; Kolednik, O. Hindered crack propagation in materials with periodically varying Young’s modulus—Lessons from biological materials. Adv. Mater. 2007, 19, 2657–2661.

    Article  Google Scholar 

  51. Zhai, H. L.; Jiang, W. G.; Tao, J. H.; Lin, S. Y.; Chu, X.; Xu, X. B.; Tang, R. K. Self-assembled organic–inorganic hybrid elastic crystal via biomimetic mineralization. Adv. Mater. 2010, 22, 3729–3734.

    Article  Google Scholar 

  52. Rho, J.-Y.; Tsui, T. Y.; Pharr, G. M. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterial. 1997, 18, 1325–1330.

    Article  Google Scholar 

  53. Cappella, B.; Dietler, G. Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 1999, 34, 5–104.

    Article  Google Scholar 

  54. Pittenger, B.; Slade, A. Performing quantitative nanomechanical AFM measurements on live cells. Microsc. Toda. 2013, 21, 12–17.

    Article  Google Scholar 

  55. Li, Y. L.; Zhang, S.; Guo, L. J.; Dong, M. D.; Liu, B.; Mamdouh, W. Collagen coated tantalum substrate for cell proliferation. Colloids Surf. B 2012, 95, 10–15.

    Article  Google Scholar 

  56. Gupta, H. S.; Seto, J.; Wagermaier, W.; Zaslansky, P.; Boesecke, P.; Fratzl, P. Cooperative deformation of mineral and collagen in bone at the nanoscale. Prog. Natl. Acad. Sci. US. 2006, 103, 17741–17746.

    Article  Google Scholar 

  57. Liu, Y.; Luo, D.; Kou, X.-X.; Wang, X.-D.; Tay, F. R.; Sha, Y.-L.; Gan, Y.-H.; Zhou, Y.-H. Hierarchical intrafibrillar nanocarbonated apatite assembly improves the nanomechanics and cytocompatibility of mineralized collagen. Adv. Funct. Mater. 2012, 23, 1404–1411.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Henrik Birkedal or Mingdong Dong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Bach-Gansmo, F.L., Xia, D. et al. Nanostructure and mechanical properties of the osteocyte lacunar-canalicular network-associated bone matrix revealed by quantitative nanomechanical mapping. Nano Res. 8, 3250–3260 (2015). https://doi.org/10.1007/s12274-015-0825-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0825-8

Keywords

Navigation