Skip to main content
Log in

Epitaxial growth of hyperbranched Cu/Cu2O/CuO core-shell nanowire heterostructures for lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 15 September 2017

This article has been updated

Abstract

The careful design of nano-architectures and smart hybridization of expected active materials can lead to more advanced properties. Here we have engineered a novel hierarchical branching Cu/Cu2O/CuO heteronanostructure by combining a facile hydrothermal method and subsequent controlled oxidation process. The fine structure and epitaxial relationship between the branches and backbone are investigated by high-resolution transmission electron microscopy. Moreover, the evolution of the branch growth has also been observed during the gradual oxidation of the Cu nanowire surface. The experimental results suggest that the surface oxidation needs to be performed via a two-step exposure process to varying humidity in order to achieve optimized formation of a core-shell structured branching architecture. Finally, a proof-of-concept of the function of such a hierarchical framework as the anode material in lithium-ion batteries is demonstrated. The branching core-shell heterostructure improves battery performance by several means: (i) The epitaxially grown branches provide a high surface area for enhanced electrolyte accessibility and high resistance to volume change induced by Li+ intercalation/extraction; (ii) the core-shell structure with its well-defined heterojunction increases the contact area which facilitates effective charge transport during lithiation; (iii) the copper core acts as a current collector as well as providing structural reinforcement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 15 September 2017

    The authors note that there is an extra incorrect citation for Fig. S5 appeared on page 2770. It has also come to our attention that Figs. 5 and 6 appeared incorrectly. The correct figures and their legend appear below. These errors don’t affect the conclusions of the article.

References

  1. Bierman, M. J.; Jin, S. Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ. Sci. 2009, 2, 1050–1059.

    Article  Google Scholar 

  2. Lee, C. W.; Seo, S. D.; Kim, D. W.; Park, S.; Jin, K.; Kim, D. W.; Hong, K. S. Heteroepitaxial growth of ZnO nanosheet bands on ZnCo2O4 submicron rods toward high-performance Li ion battery electrodes. Nano Res. 2013, 6, 348–355.

    Article  Google Scholar 

  3. Wu, H.; Xu, M.; Wang, Y. C.; Zheng, G. F. Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes. Nano Res. 2013, 6, 167–173.

    Article  Google Scholar 

  4. Jiang, X. C.; Tian, B. Z.; Xiang, J.; Qian, F.; Zheng, G. F.; Wang, H. T.; Mai, L. Q.; Lieber, C. M. Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. Proc. Natl. Acad. Sci. USA 2011, 108, 12212–12216.

    Article  Google Scholar 

  5. Liu, C.; Tang, J. Y.; Chen, H. M.; Liu, B.; Yang, P. D. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett. 2013, 13, 2989–2992.

    Article  Google Scholar 

  6. Cheng, C. W.; Fan, H. J. Branched nanowires: Synthesis and energy applications. Nano Today 2012, 7, 327–343.

    Article  Google Scholar 

  7. Zhou, S.; Liu, X. H.; Wang, D. W. Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries. Nano Lett. 2010, 10, 860–863.

    Article  Google Scholar 

  8. Zhou, S.; Yang, X. G.; Xie, J.; Simpson, Z. I.; Wang, D. W. Titanium silicide nanonet as a new material platform for advanced lithium ion battery applications. Chem. Commun. 2013, 49, 6470–6476.

    Article  Google Scholar 

  9. Ke, F. S.; Huang, L.; Solomon, B. C.; Wei, G. Z.; Xue, L. J.; Zhang, B.; Li, J. T.; Zhou, X. D.; Sun, S. G. Three-dimensional nanoarchitecture of Sn-Sb-Co alloy as an anode of lithium-ion batteries with excellent lithium storage performance. J. Mater. Chem. 2012, 22, 17511–17517.

    Article  Google Scholar 

  10. Zhou, W. W.; Cheng, C. W.; Liu, J. P.; Tay, Y. Y.; Jiang, J.; Jia, X. T.; Zhang, J. X.; Gong, H.; Hng, H. H.; Yu, T. et al. Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 2011, 21, 2439–2445.

    Article  Google Scholar 

  11. Liu, J. P.; Jiang, J.; Cheng, C. W.; Li, H. X.; Zhang, J. X.; Gong, H.; Fan, H. J. Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: A new class of high-performance pseudocapacitive materials. Adv. Mater. 2011, 23, 2076–2081.

    Article  Google Scholar 

  12. Zhou, S.; Yang, X. G.; Lin, Y. J.; Xie, J.; Wang, D. W. A nanonet-enabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime. ACS Nano 2012, 6, 919–924.

    Article  Google Scholar 

  13. Feng, Y. Z.; Cho, I. S.; Rao, P. M.; Cai, L. L.; Zheng, X. L. Sol-flame synthesis: A general strategy to decorate nanowires with metal oxide/noble metal nanoparticles. Nano Lett. 2013, 13, 855–860.

    Article  Google Scholar 

  14. Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Chen, J.; Wang, X. L.; Gu, C. D.; Guan, C.; Luo, J. S.; Fan, H. J. Porous hydroxide nanosheets on preformed nanowires by electrodeposition: Branched nanoarrays for electrochemical energy storage. Chem. Mater. 2012, 24, 3793–3799.

    Article  Google Scholar 

  15. Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; Smart, R. St. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898.

    Article  Google Scholar 

  16. Epitaxial Growth; J. W. Matthews, Ed.; Academic Press: New York, 1975.

    Google Scholar 

  17. Zhang, Q. B.; Wang, J. X.; Xu, D. G.; Wang, Z. X.; Li, X. H.; Zhang, K. L. Facile large-scale synthesis of vertically aligned CuO nanowires on nickel foam: Growth mechanism and remarkable electrochemical performance. J. Mater. Chem. A 2014, 2, 3865–3874.

    Article  Google Scholar 

  18. Sun, S. D.; Yang, Z. M. Recent advances in tuning crystal facets of polyhedral cuprous oxide architectures. RSC Adv. 2014, 4, 3804–3822.

    Article  Google Scholar 

  19. Wang, J.; Liu, Y. C.; Wang, S. Y.; Guo, X. T.; Liu, Y. P. Facile fabrication of pompon-like hierarchical CuO hollow microspheres for high-performance lithium-ion batteries. J. Mater. Chem. A 2014, 2, 1224–1229.

    Article  Google Scholar 

  20. Zhu, C. R.; Chao, D. L.; Sun, J.; Bacho, I. M.; Fan, Z. X.; Ng, C. F.; Xia, X. H.; Huang, H.; Zhang, H.; Shen, Z. X. et al. Enhanced lithium storage performance of CuO nanowires by coating of graphene quantum dots. Adv. Mater. Interfaces, in press, DOI: 10.1002/admi.201400499.

  21. Hirsch, P. B. Electron Microscopy of Thin Crystals; Krieger Pub. Co: New York, 1977.

    Google Scholar 

  22. Niu, M. T.; Huang, F.; Cui, L. F.; Huang, P.; Yu, Y. L.; Wang, Y. S. Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanoheterostructures. ACS Nano 2010, 4, 681–688.

    Article  Google Scholar 

  23. Casavola, M.; Grillo, V.; Carlino, E.; Giannini, C.; Gozzo, F.; Fernandez Pinel, E.; Garcia, M. A.; Manna, L.; Cingolani, R.; Cozzoli, P. D. Topologically controlled growth of magnetic-metal-functionalized semiconductor oxide nanorods. Nano Lett. 2007, 7, 1386–1395.

    Article  Google Scholar 

  24. Nakamura, R.; Matsubayashi, G.; Tsuchiya, H.; Fujimoto, S.; Nakajima, H. Formation of oxide nanotubes via oxidation of Fe, Cu and Ni nanowires and their structural stability: Difference in formation and shrinkage behavior of interior pores. Acta Mater. 2009, 57, 5046–5052.

    Article  Google Scholar 

  25. Soon, A.; Todorova, M.; Delley, B.; Stampfl, C. Oxygen adsorption and stability of surface oxides on Cu (111): A first-principles investigation. Phys. Rev. B 2006, 73, 165424.

    Article  Google Scholar 

  26. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

    Article  Google Scholar 

  27. Wu, H.; Zheng, G. Y.; Liu, N.; Carney, T. J.; Yang, Y.; Cui, Y. Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett. 2012, 12, 904–909.

    Article  Google Scholar 

  28. Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258–262.

    Article  Google Scholar 

  29. Débart, A.; Dupont, L.; Poizot, P.; Leriche, J. B.; Tarascon, J. M. A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. J. Electrochem. Soc. 2001, 148, A1266-A1274.

  30. Ko, S.; Lee, J. I.; Yang, H. S.; Park, S.; Jeong, U. Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes. Adv. Mater. 2012, 24, 4451–4456.

    Article  Google Scholar 

  31. Sahay, R.; Suresh Kumar, P.; Aravindan, V.; Sundaramurthy, J.; Ling, W. C.; Mhaisalkar, S. G.; Ramakrishna, S.; Madhavi, S. High aspect ratio electrospun CuO nanofibers as anode material for lithium-ion batteries with superior cycleability. J. Phys. Chem. C 2012, 116, 18087–18092.

    Article  Google Scholar 

  32. Li, X. F.; Dhanabalan, A.; Bechtold, K.; Wang, C. L. Binder-free porous core-shell structured Ni/NiO configuration for application of high performance lithium ion batteries. Electrochem. Commun. 2010, 12, 1222–1225.

    Article  Google Scholar 

  33. Gao, X. P.; Bao, J. L.; Pan, G. L.; Zhu, H. Y.; Huang, P. X.; Wu, F.; Song, D. Y. Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. J. Phys. Chem. B 2004, 108, 5547–5551.

    Article  Google Scholar 

  34. Wang, X.; Tang, D. M.; Li, H. Q.; Yi, W.; Zhai, T. Y.; Bando, Y.; Golberg, D. Revealing the conversion mechanism of CuO nanowires during lithiation-delithiation by in situ transmission electron microscopy. Chem. Commun. 2012, 48, 4812–4814.

    Article  Google Scholar 

  35. Qu, J.; Li, H. Q.; Henry, J. J.; Martha, S. K.; Dudney, N. J.; Xu, H. B.; Chi, M. F.; Lance, M. J.; Mahurin, S. M.; Besmann, T. M. et al. Self-aligned Cu-Si core-shell nanowire array as a high-performance anode for li-ion batteries. J. Power Sources 2012, 198, 312–317.

    Article  Google Scholar 

  36. Cao, F. F.; Deng, J. W.; Xin, S.; Ji, H. X.; Schmidt, O. G.; Wan, L. J.; Guo, Y. G. Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries. Adv. Mater. 2011, 23, 4415–4420.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zifeng Yan or Ziyang Huo.

Additional information

These authors contributed equally to this work.

An erratum to this article is available at https://doi.org/10.1007/s12274-017-1843-5.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhang, Y., Zhao, H. et al. Epitaxial growth of hyperbranched Cu/Cu2O/CuO core-shell nanowire heterostructures for lithium-ion batteries. Nano Res. 8, 2763–2776 (2015). https://doi.org/10.1007/s12274-015-0783-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0783-1

Keywords

Navigation