Skip to main content
Log in

Implications for photonic applications of diatom growth and frustule nanostructure changes in response to different light wavelengths

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Diatoms are unicellular algae enclosed in intricate bio-silicified walls with repetitive nanostructures in a size range which makes them potentially relevant for a broad spectrum of industrial applications. How to optimize the nano-scale structures of the frustule for utilization of diatoms in nanotechnology is one of the technological challenges for these applications. Light is one of the most important abiotic factors for algal photosynthetic growth, and the frustule may play an important role in mediating light for these biological functions, as well as being central for its nano-technological applications. In this study, we tested the influence of light quality on the nanostructure of the frustule of Coscinodiscus granii and compared this to growth rate response. The results showed that colored light (red, yellow, green and blue) at 300 µmol photons m−2·s−1 resulted in a statistically significant change in nanostructure compared to white light. Green light at 100 µmol photon m−2·s−1 led to a significant decrease in mean frustule diameter and mean foramen diameter. Numerical simulations confirmed that the morphological changes obtained were sufficient to induce clear differences in the photonics properties of the frustule. The wavelength had no effect on the growth rate at high light intensity (300 µmol photons m−2·s−1). However, at 100 µmol photons m−2·s−1, yellow, red-orange and green light resulted in significantly lower maximum growth rates than the other wavelengths. This response of the frustule structure to different light treatment indicates the possibility of a light-based frustule nanostructure manipulation method, which is simple and environmentally friendly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nelson, D. M.; Tréguer, P.; Brzezinski, M. A.; Leynaert, A.; Quéguiner, B. Production and dissolution of biogenic silica in ocean-revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global. Biogeochem. Cycles. 1995, 9, 359–372.

    Article  Google Scholar 

  2. Li, H. Y.; Lu, Y.; Zheng, J. W.; Yang, W. D.; Liu, J. S. Biochemical and genetic engineering of diatoms for polyunsaturated fatty acid biosynthesis. Mar. Drugs. 2014, 12, 153–166.

    Article  Google Scholar 

  3. Guiry, M. D. How many species of algae are there? J. Phycol. 2012, 48, 1057–1063.

    Article  Google Scholar 

  4. Martin-Jezequel, V.; Hildebrand, M.; Brzezinski, M. A. Silicon metabolism in diatoms: Implications for growth. J. Phycol. 2000, 36, 821–840.

    Article  Google Scholar 

  5. Kröger, N.; Sumper, M. The molecular basis of diatom biosilicaformation. Biomineralization: Progress in biology, molecular biology and application; Bäuerlein, E., 2nd Eds.; SBN: 978-3-527-60461-6, 135–158.

  6. Round, E. F.; Crawford, M. R.; Mann, G. D. The diatoms: Biology & morphology of the genera; Cambridge University Press: New York, 1990.

    Google Scholar 

  7. Kröger, N.; Poulsen, N. Diatoms-from cell wall biogenesis to nanotechnology. Annu. Rev. Genet. 2008, 42, 83–107.

    Article  Google Scholar 

  8. Lettieri, S.; Setaro, A.; De Stefano, L.; De Stefano, M.; Maddalena, P. The gas-detection properties of light-emitting diatoms. Adv. Funct. Mater. 2008, 18, 1257–1264.

    Article  Google Scholar 

  9. De Stefano, L.; De Stefano, M.; Maddalena, P.; Moretti, L.; Rea, I.; Mocella, V.; Rendina, I. Playing with light in diatoms: Small water organisms with anatural photonic crystal structure. Proc. SPIE 2007, 6593, 659313.

    Article  Google Scholar 

  10. De Stefano, L.; Rea, I.; Rendina, I.; De Stefano, M.; Moretti, L. Lenslesslight focusing with the centric marine diatom Coscinodiscus walesii. Opt. Express 2007, 15, 18082–18088.

    Article  Google Scholar 

  11. Oh, S. J.; Kim, D. I.; Sajima, T.; Shimasaki, Y.; Matsuyama, Y.; Oshima, Y.; Honjo, T.; Yang, H. S. Effects of irradiance of various wavelengths from light-emitting diodes on the growth of the harmful dinoflagellate Heterocapsacircularisquama and the diatom Skeletonema costatum. Fisheries Sci. 2008, 74, 137–145.

    Article  Google Scholar 

  12. Kieu, K.; Li, C.; Fang, Y.; Cohoon, G.; Herrera, O. D.; Hildebrand, M.; Sandhage, K. H.; Norwood, R. A. Structurebased optical filtering by the silica microshell of the centric marine diatom Coscinodiscus wailesii. Opt. Express 2014, 22, 15992–15999.

    Article  Google Scholar 

  13. Ferrara, M. A.; Dardano, P.; De Stefano, L.; Rea, I.; Coppola, G.; Rendina, I.; Congestri, R.; Antonucci, A.; De Stefano, M.; De Tommasi, E. Optical properties of diatom nanostructured biosilica in Arachnoidiscus sp: Micro-optics from mother nature. PloS One 2014, 9, e103750.

  14. De Stefano, L.; Maddalena, P.; Moretti, L.; Rea, I.; Rendina, I.; De Tommasi, E.; Mocella, V.; De Stefano, M. Nanobiosilica from marine diatoms: Abrand new material for photonic applications. Superlattices Microstruct 2009, 46, 84–89.

    Article  Google Scholar 

  15. Qin, T.; Gutu, T.; Jiao, J.; Chang, C. H.; Rorrer, G. L. Biological fabrication of photoluminescent nanocomb structures by metabolic incorporation of germanium into the biosilica of the diatom Nitzschia Frustulum. ACS Nano 2008, 2, 1296–1304.

    Article  Google Scholar 

  16. Zhang, D. Y.; Wang, Y.; Cai, J.; Pan, J. F.; Jiang, X. G.; Jiang, Y. G. Bio-manufacturing technology based on diatom micro- and nanostructure. Chin. Sci. Bull. 2012, 57, 3836–3849.

    Article  Google Scholar 

  17. Losic, D.; Triani, G.; Evans, P. J.; Atanacio, A.; Mitchell, J. G.; Voelcker, N. H. Controlled pore structure modification of diatoms by atomic layer deposition of TiO2. J. Mater. Chem. 2006, 16, 4029–4034.

    Article  Google Scholar 

  18. Townley, H. E.; Woon, K. L.; Payne, F. P.; White-Cooper, H.; Parker, A. R. Modification of the physical and optical properties of the frustule of the Diatom Coscinodiscus wailesii by nickel sulfate. Nanotechnol. 2007, 18, 295101.

    Article  Google Scholar 

  19. Jeffryes, C.; Gutu, T.; Jiao, J.; Rorrer, G. L. Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp by atwo-stage bioreactor cultivation process. ACS Nano 2008, 2, 2103–2112.

    Article  Google Scholar 

  20. Hansen, L. R.; Soylu, S. I.; Kotaki, Y.; Moestrup, O.; Lundholm, N. Toxin production and temperature-induced morphological variation of the diatom Pseudo-nitzschiaseriata from the arctic. Harmful Algae. 2011, 10, 689–696.

    Article  Google Scholar 

  21. Lewis, N. I.; Bates, S. S.; McLachlan, J. L.; Smith, J. C. Temperature effects on growth, domoicacid production, and morphology of the diatom nitzschiapungens f. multiseries; Smayda, T.J., Shimizu, Y., Eds.; Amsterdam: Elsevier, 1993, 3, 601–606.

    Google Scholar 

  22. De Stefano, M.; De Stefano, L.; Congestri, R. Functional morphology of micro and nanostructures in two distinct diatom frustules. Superlattices Microstruct. 2009, 46, 64–68.

    Article  Google Scholar 

  23. Parker, A. R.; Townley, H. E. Biomimetics of photonic nanostructures. Nat. Nanotechnol. 2007, 2, 347–353.

    Article  Google Scholar 

  24. Sumper, M.; Brunner, E. Learning from diatoms: Nature’s tools for the production of nanostructured silica. Adv. Funct. Mater. 2006, 16, 17–26.

    Article  Google Scholar 

  25. Mouget, J. L.; Rosa, P.; Tremblin, G. Acclimation of Hasleaostrearia to light of different spectral qualities-confirmation of “chromatic adaptation” in diatoms. J. Photochem. Photobiol., B 2004, 75, 1–11.

    Article  Google Scholar 

  26. Mercado, J. M.; Sánchez-Saavedra, M. D.; Correa-Reyes, G.; Lubián, L.; Montero, O.; Figueroa, F. L. Blue light effect on growth, light absorption characteristics and photosynthesis of five benthic diatom strains. Aquat Bot. 2004, 78, 265–277.

    Article  Google Scholar 

  27. Glover, H. E.; Keller, M. D.; Spinrad, R. W. The effects of light quality and intensity on photosynthesis and growth of marine eukaryotic and prokaryotic phytoplankton clones. J. Exp. Mar. Biol. Ecol. 1987, 105, 137–159.

    Article  Google Scholar 

  28. Wallen, D. G.; Geen, G. H. Light quality in relation to growth, photosynthetic rates and carbon metabolism in 2 speices of marine plankton algae. Mar. Biol. 1971, 10, 34–43.

    Article  Google Scholar 

  29. Wallen, D. G.; Geen, G. H. Light quality and concentration of proteins, RNA, DNA and photo synthetic pigments in 2 species of marine plankton algae. Mar. Biol. 1971, 10, 44–51.

    Article  Google Scholar 

  30. Keeling, P.J. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu. Rev. Plant Biol. 2013, 64, 583–607.

    Article  Google Scholar 

  31. Olle, M.; Viršile, A. The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agric. Food Sci. 2013, 22, 223–234.

    Google Scholar 

  32. Schulze, P. S. C.; Barreira, L. A.; Pereira, H. G. C.; Perales, J. A.; Varela, J. C. S. Light emitting diodes (LEDs) applied to microalgal production. Trends Biotechnol. 2014, 32, 423–431.

    Article  Google Scholar 

  33. Blanken, W.; Cuaresma, M.; Wijffels, R. H.; Janssen, M. Cultivation of microalgae on artificial light comes at acost. Algal Res. 2013, 2, 333–340.

    Article  Google Scholar 

  34. Taylor, N. J. Silica incorporation in the diatom Coscinodiscus granii as affected by light intensity. Brit. Phycol. J. 1985, 20, 365–374.

    Article  Google Scholar 

  35. Tomas, C. Identifying Marine Phytoplankton; Academic Press: 1997.

    Google Scholar 

  36. Jung, S. W.; Youn, S. J.; Shin, H. H.; Yun, S. M.; Ki, J. S.; Lee, J. H. Effect of temperature on changes in size and morphology of the marine diatom, Ditylumbrightwellii (west) grunow (Bacillariophyceae). Estuarine, Coastal Shelf Sci. 2013, 135, 128–136.

    Article  Google Scholar 

  37. Falasco, E.; Bona, F.; Badino, G.; Hoffmann, L.; Ector, L. Diatom teratologicalforms and environmental alterations: A review. Hydrobiologia. 2009, 623, 1–35.

    Article  Google Scholar 

  38. Villareal, T. A.; Fryxell, G. A. Temperature effects on the valve structure of the bipolar diatoms Thalassiosira antarctica and Porosiraglacialis. Polar Biol. 1983, 2, 163–169.

    Article  Google Scholar 

  39. Hervé, V.; Derr, J.; Douady, S.; Quinet, M.; Moisan, L.; Lopez, P. J. Multiparametricanalyses reveal the pH-dependence of silicon biomineralization in diatoms. Plos One 2012, 7, 1–12.

    Article  Google Scholar 

  40. Leterme, S. C.; Ellis, A. V.; Mitchell, J. G.; Buscot, M. J.; Pollet, T.; Schapira, M.; Seuront, L. Morphological flexibility of Cocconeisplacentula (Bacillariophyceae) nanostructure to changing salinity levels. J. Phycol. 2010, 46, 715–719.

    Article  Google Scholar 

  41. Cattaneo, A.; Couillard, Y.; Wunsam, S.; Courcelles, M. Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Québec, Canada). J. Paleolimnol. 2004, 32, 163–175.

    Article  Google Scholar 

  42. De Tommasi, E.; Rea, I.; Mocella, V.; Moretti, L.; De Stefano, M.; Rendina, I.; De Stefano, L. Multi-wavelength study of light transmitted through asingle marine centric diatom. Opt. Express 2010, 18, 12203–12212.

    Article  Google Scholar 

  43. Noyes, J.; Sumper, M.; Vukusic, P. Light manipulation in amarine diatom. J. Mater. Res. 2008, 23, 3229–3235.

    Article  Google Scholar 

  44. Guillard, R. R. L.; Hargraves, P. E. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia. 1993, 32, 234–236.

    Article  Google Scholar 

  45. Christensen, T. Alger i naturen og i laboratoriet; Københavns Universitet/Institut for Sporeplanter: 1988.

    Google Scholar 

  46. Hasle, G. R.; Fryxell, G. A. Diatom: Cleaning and mounting for light and electron microscopy. Trans. Am. Microsc. Soc. 1970, 89, 469–474.

    Article  Google Scholar 

  47. Delen, N.; Hooker, B. Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: A fast fourier transform approach. JOSA A 1998, 15, 857–867.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Su.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Lundholm, N., Friis, S.M.M. et al. Implications for photonic applications of diatom growth and frustule nanostructure changes in response to different light wavelengths. Nano Res. 8, 2363–2372 (2015). https://doi.org/10.1007/s12274-015-0746-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0746-6

Keywords

Navigation