Skip to main content
Log in

Chinese brushes: From controllable liquid manipulation to template-free printing microlines

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As a traditional writing instrument for calligraphy and painting, the Chinese brush has enjoyed a high reputation over the last 5,000 years due to its ability to controllably handle liquid ink, and has been widely used to deposit ink into certain characters or figures as a means of cultural communication. In this mini-review, we first show how the key to the controllable liquid transfer in a Chinese brush lies in the anisotropic multi-scale structural features of the freshly emergent hairs. Then, drawing inspiration from this, applications in controllable liquid pumping, highly efficient liquid transfer and template-free printing microlines are addressed. We envision that the fundamentals of Chinese brushes and their applications in liquid manipulation mentioned in this review may also be extended to other liquid phase functional material systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han, Y.; Li, X.; Fu, C. Origins of Chinese Culture. Asiapac Books Pte Ltd: Singapore, 2005.

    Google Scholar 

  2. Wang, Q. B.; Su, B.; Liu, H.; Jiang, L. Chinese brushes: Controllable liquid transfer in ratchet conical hairs. Advanced Materials 2014, 26, 4889–4894.

    Article  Google Scholar 

  3. Da-Wei, K. Chinese Brushwork in Calligraphy and Painting: Its History, Aesthetics, and Techniques. Courier Dover Publications: New York, 2012.

    Google Scholar 

  4. Ju, J.; Zheng, Y. M.; Jiang, L. Bioinspired one-dimensional materials for directional liquid transport. Acc. Chem. Res. 2014, 47, 2342–2352.

    Article  Google Scholar 

  5. Bai, H.; Ju, J.; Zheng, Y. M.; Jiang, L. Functional fibers with unique wettability inspired by spider silks. Adv. Mater. 2012, 24, 2786–2791.

    Article  Google Scholar 

  6. Jiang, S. Q.; Huang, Q. M.; Ye, Q. X.; Gao, W. An effective method to detect and categorize digitized traditional Chinese paintings. Pattern Recogn. Lett. 2006, 27, 734–746.

    Article  Google Scholar 

  7. Wang, Q. B.; Meng, Q. A.; Chen, M.; Liu, H.; Jiang, L. Bio-inspired multistructured conical copper wires for highly efficient liquid manipulation. ACS Nano 2014, 8, 8757–8764.

    Article  Google Scholar 

  8. Sima, Q. Records of the Grand Historian: The Biography of Meng Tian. Zhonghua Book Company: Beijing, 1967.

    Google Scholar 

  9. Bico, J.; Roman, B.; Moulin, L.; Boudaoud, A. Adhesion: Elastocapillary coalescence in wet hair. Nature 2004, 432, 690–690.

    Article  Google Scholar 

  10. Py, C.; Bastien, R.; Bico, J.; Roman, B.; Boudaoud, A. 3D aggregation of wet fibers. EPL 2007, 77, 44005.

    Article  Google Scholar 

  11. Zheng, Y. M.; Bai, H.; Huang, Z. B.; Tian, X. L.; Nie, F.-Q.; Zhao, Y.; Zhai, J.; Jiang, L. Directional water collection on wetted spider silk. Nature 2010, 463, 640–643.

    Article  Google Scholar 

  12. Lorenceau, É.; Quéré, D. Drops on a conical wire. J. Fluid Mech. 2004, 510, 29–45.

    Article  Google Scholar 

  13. Ju, J.; Bai, H.; Zheng, Y. M.; Zhao, T. Y.; Fang, R. C.; Jiang, L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. commun. 2012, 3, 1247.

    Article  Google Scholar 

  14. Bhushan, B. Nanoscale characterization of human hair and hair conditioners. Prog. Mater. Sci. 2008, 53, 585–710.

    Article  Google Scholar 

  15. Robbins, C. R. Chemical and Physical Behavior of Human hair. Springer-Verlag: New York, 2002; Vol. 4.

    Google Scholar 

  16. Kamath, Y. K.; Dansizer, C. J.; Weigmann, H.-D. Wetting behavior of human hair fibers. J. Appl. Polym. Sci. 1978, 22, 2295–2306.

    Article  Google Scholar 

  17. Lodge, R. A.; Bhushan, B. Wetting properties of human hair by means of dynamic contact angle measurement. J. Appl. Polym. Sci. 2006, 102, 5255–5265.

    Article  Google Scholar 

  18. Extrand, C. W. Retention forces of a liquid slug in a rough capillary tube with symmetric or asymmetric features. Langmuir 2007, 23, 1867–1871.

    Article  Google Scholar 

  19. Chu, K.-H.; Xiao, R.; Wang, E. N. Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat. Mater. 2010, 9, 413–417.

    Article  Google Scholar 

  20. Malvadkar, N. A.; Hancock, M. J.; Sekeroglu, K.; Dressick, W. J.; Demirel, M. C. An engineered anisotropic nanofilm with unidirectional wetting properties. Nat. mater. 2010, 9, 1023–1028.

    Article  Google Scholar 

  21. Atencia, J.; Beebe, D. J. Controlled microfluidic interfaces. Nature 2004, 437, 648–655.

    Article  Google Scholar 

  22. Song, H.; Chen, D. L.; Ismagilov, R. F. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. 2006, 45, 7336–7356.

    Article  Google Scholar 

  23. Song, H.; Tice, J. D.; Ismagilov, R. F. A microfluidic system for controlling reaction networks in time. Angew. Chem. Int. Ed. 2003, 42, 768–772.

    Article  Google Scholar 

  24. Stone, H. A.; Stroock, A. D.; Ajdari, A. Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 2004, 36, 381–411.

    Article  Google Scholar 

  25. Tan, Y. C.; Fisher, J. S.; Lee, A. I.; Cristini, V.; Lee, A. P. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. LabChip 2004, 4, 292–298.

    Google Scholar 

  26. Balu, B.; Berry, A. D.; Hess, D. W.; Breedveld, V. Patterning of superhydrophobic paper to control the mobility of microliter drops for two-dimensional lab-on-paper applications. Lab Chip 2009, 9, 3066–3075.

    Article  Google Scholar 

  27. Chaudhury, M. K.; Whitesides, G. M. How to make water run uphill. Science 1992, 256, 1539–1541.

    Article  Google Scholar 

  28. Grunze, M. Driven liquids. Science 1999, 283, 41–42.

    Article  Google Scholar 

  29. Mettu, S.; Chaudhury, M. K. Motion of drops on a surface induced by thermal gradient and vibration. Langmuir 2008, 24, 10833–10837.

    Article  Google Scholar 

  30. Yarin, A. L.; Liu, W. X.; Reneker, D. H. Motion of droplets along thin fibers with temperature gradient. J. Appl. Phys. 2002, 91, 4751–4760.

    Article  Google Scholar 

  31. Bico, J.; Quéré, D. Liquid trains in a tube. Europhys. Lett. 2000, 51, 546.

    Article  Google Scholar 

  32. Zhang, J. L.; Han, Y. C. Shape-gradient composite surfaces: Water droplets move uphill. Langmuir 2007, 23, 6136–6141.

    Article  Google Scholar 

  33. Subramanian, R. S.; Moumen, N.; McLaughlin, J. B. Motion of a drop on a solid surface due to a wettability gradient. Langmuir 2005, 21, 11844–11849.

    Article  Google Scholar 

  34. Moumen, N.; Subramanian, R. S.; McLaughlin, J. B. Experiments on the motion of drops on a horizontal solid surface due to a wettability gradient. Langmuir 2006, 22, 2682–2690.

    Article  Google Scholar 

  35. Arulanandam, S.; Li, D. Q. Liquid transport in rectangular microchannels by electroosmotic pumping. Colloid Surf. A: Physicochem. Eng. Asp. 2000, 161, 89–102.

    Article  Google Scholar 

  36. Zhang, J. H.; Cheng, Z. J.; Zheng, Y. M.; Jiang, L. Ratchet-induced anisotropic behavior of superparamagnetic microdroplet. Appl. Phys. Lett. 2009, 94, 144104.

    Article  Google Scholar 

  37. Hancock, M. J.; Sekeroglu, K.; Demirel, M. C. Bioinspired directional surfaces for adhesion, wetting, and transport. Adv. Funct. Mater. 2012, 22, 2223–2234.

    Article  Google Scholar 

  38. Lagubeau, G.; Le Merrer, M.; Clanet, C.; Quéré, D. Leidenfrost on a ratchet. Nat. Phys. 2011, 7, 395–398.

    Article  Google Scholar 

  39. Zheng, Y. M.; Gao, X. F.; Jiang, L. Directional adhesion of superhydrophobic butterfly wings. Soft Matter 2007, 3, 178–182.

    Article  Google Scholar 

  40. Bai, H.; Tian, X. L.; Zheng, Y. M.; Ju, J.; Zhao, Y.; Jiang, L. Direction controlled driving of tiny water drops on bioinspired artificial spider silks. Adv. Mater. 2010, 22, 5521–5525.

    Article  Google Scholar 

  41. Feng, S. L.; Hou, Y. P.; Xue, Y.; Gao, L. C.; Jiang, L.; Zheng, Y. M. Photo-controlled water gathering on bioinspired fibers. Soft Matter 2013, 9, 9294–9297.

    Article  Google Scholar 

  42. Hou, Y. P.; Gao, L. C.; Feng, S. L.; Chen, Y.; Xue, Y.; Jiang, L.; Zheng, Y. M. Temperature-triggered directional motion of tiny water droplets on bioinspired fibers in humidity. Chem. Commun. 2013, 49, 5253–5255.

    Article  Google Scholar 

  43. Huang, J. Y.; Lo, Y. C.; Niu, J. J.; Kushima, A.; Qian, X. F.; Zhong, L.; Mao, S. X.; Li, J. Nanowire liquid pumps. Nat. Nanotechnol. 2013, 8, 277–281.

    Article  Google Scholar 

  44. Chen, Y.; Wang, L.; Xue, Y.; Jiang, L.; Zheng, Y. M. Bioinspired tilt-angle fabricated structure gradient fibers: Micro-drops fast transport in a long-distance. Scientific Reports 2013, 3. 2927

  45. Hou, Y. P.; Chen, Y.; Xue, Y.; Wang, L.; Zheng, Y. M.; Jiang, L. Stronger water hanging ability and higher water collection efficiency of bioinspired fiber with multi-gradient and multi-scale spindle knots. Soft Matter 2012, 8, 11236–11239.

    Article  Google Scholar 

  46. Li, K.; Ju, J.; Xue, Z. X.; Ma, J.; Feng, L.; Gao, S.; Jiang, L. Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water. Nat. Commun. 2013, 4, 2276

    Google Scholar 

  47. Anzenbacher, P.; Palacios, M. A. Polymer nanofibre junctions of attolitre volume serve as zeptomole-scale chemical reactors. Nat. Chem. 2009, 1, 80–86.

    Article  Google Scholar 

  48. Millman, J. R.; Bhatt, K. H.; Prevo, B. G.; Velev, O. D. Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors. Nat. Mater. 2004, 4, 98–102.

    Article  Google Scholar 

  49. Ferraro, P.; Coppola, S.; Grilli, S.; Paturzo, M.; Vespini, V. Dispensing nano-pico droplets and liquid patterning by pyroelectrodynamic shooting. Nat. Nanotechnol. 2010, 5, 429–435.

    Article  Google Scholar 

  50. Ledesma-Aguilar, R.; Nistal, R.; Hernández-Machado, A.; Pagonabarraga, I. Controlled drop emission by wetting properties in driven liquid filaments. Nat. Mater. 2011, 10, 367–371.

    Article  Google Scholar 

  51. Park, J. U.; Hardy, M.; Kang, S. J.; Barton, K.; Adair, K.; kishore Mukhopadhyay, D.; Lee, C. Y.; Strano, M. S.; Alleyne, A. G.; Georgiadis, J. G. High-resolution electrohydrodynamic jet printing. Nature Mater. 2007, 6, 782–789.

    Article  Google Scholar 

  52. Tian, D. L.; Song, Y. L.; Jiang, L. Patterning of controllable surface wettability for printing techniques. Chem. Soc. Rev. 2013, 42, 5184–5209.

    Article  Google Scholar 

  53. Tavana, H.; Jovic, A.; Mosadegh, B.; Lee, Q.; Liu, X.; Luker, K. E.; Luker, G. D.; Weiss, S.; Takayama, S. Nanolitre liquid patterning in aqueous environments for spatially defined reagent delivery to mammalian cells. Nat. Mater. 2009, 8, 736–741.

    Article  Google Scholar 

  54. Fenn, J. B. Electrospray wings for molecular elephants (Nobel lecture). Angew. Chem. Int. Ed. 2003, 42, 3871–3894.

    Article  Google Scholar 

  55. Hong, X.; Gao, X. F.; Jiang, L. Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet. J. Am. Chem. Soc. 2007, 129, 1478–1479.

    Article  Google Scholar 

  56. Wheeler, T. D.; Stroock, A. D. The transpiration of water at negative pressures in a synthetic tree. Nature 2008, 455, 208–212.

    Article  Google Scholar 

  57. Lewis, J. A.; Gratson, G. M. Direct writing in three dimensions. Mater. Today 2004, 7, 32–39.

    Article  Google Scholar 

  58. Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S. H. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143–149.

    Article  Google Scholar 

  59. Liu, J. W.; Liang, H. W.; Yu, S. H. Macroscopic-scale assembled nanowire thin films and their functionalities. Chem. Rev. 2012, 112, 4770–4799.

    Article  Google Scholar 

  60. Liu, J. W.; Zhu, J. H.; Zhang, C. L.; Liang, H. W.; Yu, S. H. Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J. Am. Chem. Soc. 2010, 132, 8945–8952.

    Article  Google Scholar 

  61. Russo, A.; Ahn, B. Y.; Adams, J. J.; Duoss, E. B.; Bernhard, J. T.; Lewis, J. A. Pen-on-paper flexible electronics. Adv. Mater. 2011, 23, 3426–3430.

    Article  Google Scholar 

  62. Sekine, S.; Ido, Y.; Miyake, T.; Nagamine, K.; Nishizawa, M. Conducting polymer electrodes printed on hydrogel. J. Am. Chem. Soc. 2010, 132 13174–13175.

    Article  Google Scholar 

  63. Zheng, Z. J.; Daniel, W. L.; Giam, L. R.; Huo, F. W.; Senesi, A. J.; Zheng, G. F.; Mirkin, C. A. Multiplexed protein arrays enabled by polymer pen lithography: addressing the inking challenge. Angew. Chem. 2009, 121, 7762–7765.

    Article  Google Scholar 

  64. Sun, Y. G.; Rogers, J. A. Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates. Nano Lett. 2004, 4, 1953–1959.

    Article  Google Scholar 

  65. Wilbur, J. L.; Kumar, A.; Kim, E.; Whitesides, G. M. Microfabrication by microcontact printing of self-assembled monolayers. Adv. Mater. 1994, 6, 600–604.

    Article  Google Scholar 

  66. Thelander, C.; Agarwal, P.; Brongersma, S.; Eymery, J.; Feiner, L. F.; Forchel, A.; Scheffler, M.; Riess, W.; Ohlsson, B. J.; Gösele, U.; et al. Nanowire-based one-dimensional electronics. Mater. Today 2006, 9, 28–35.

    Article  Google Scholar 

  67. Braunschweig, A. B.; Huo, F. W.; Mirkin, C. A. Molecular printing. Nat. Chem. 2009, 1, 353–358.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Meng, Q., Liu, H. et al. Chinese brushes: From controllable liquid manipulation to template-free printing microlines. Nano Res. 8, 97–105 (2015). https://doi.org/10.1007/s12274-014-0699-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0699-1

Keywords

Navigation