Skip to main content
Log in

Restoring pristine Bi2Se3 surfaces with an effective Se decapping process

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High quality thin films of topological insulators (TI) such as Bi2Se3 have been successfully synthesized by molecular beam epitaxy (MBE). Although the surface of MBE films can be protected by capping with inert materials such as amorphous Se, restoring an atomically clean pristine surface after decapping has never been demonstrated, which prevents in-depth investigations of the intrinsic properties of TI thin films with ex situ tools. Using high resolution scanning tunneling microscopy/spectroscopy (STM/STS), we demonstrate a simple and highly reproducible Se decapping method that allows recovery of the pristine surface of extremely high quality Bi2Se3 thin films grown and capped with Se in a separate MBE system then exposed to the atmosphere during transfer into the STM system. The crucial step of our decapping process is the removal of the surface contaminants on top of amorphous Se before thermal desorption of Se at a mild temperature (∼210 °C). This effective Se decapping process opens up the possibility of ex situ characterizations of pristine surfaces of interesting selenide materials and beyond using cutting-edge techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.

    Article  Google Scholar 

  2. Qi, X. L.; Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110.

    Article  Google Scholar 

  3. Moore, J. E. The birth of topological insulators. Nature 2010, 464, 194–198.

    Article  Google Scholar 

  4. Seo, J.; Roushan, P.; Beidenkopf, H.; Hor, Y. S.; Cava, R. J.; Yazdani, A. Transmission of topological surface states through surface barriers. Nature 2010, 466, 343–346.

    Article  Google Scholar 

  5. Analytis, J. G.; McDonald, R. D.; Riggs, S. C.; Chu, J. H.; Boebinger, G. S.; Fisher, I. R. Two-dimensional surface state in the quantum limit of a topological insulator. Nat. Phys. 2010, 6, 960–964.

    Article  Google Scholar 

  6. Kong, D.; Cha, J. J.; Lai, K.; Peng, H.; Analytis, J. G.; Meister, S.; Chen, Y.; Zhang, H. J.; Fisher, I. R.; Shen, Z. X. et al. Rapid surface oxidation as a source of surface degradation factor for Bi2Se3. ACS Nano 2011, 5, 4698–4703.

    Article  Google Scholar 

  7. Zhang, H.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

    Article  Google Scholar 

  8. Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398–402.

    Article  Google Scholar 

  9. Wang, X. X.; Bian, G.; Miller, T.; Chiang, T. C. Fragility of surface states and robustness of topological order in Bi2Se3 against oxidation. Phys. Rev. Lett. 2012, 108, 096404.

    Article  Google Scholar 

  10. Zhang, Y.; He, K.; Chang, C. Z.; Song, C. L.; Wang, L. L.; Chen, X.; Jia, J. F.; Fang, Z.; Dai, X.; Shan, W. Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.

    Article  Google Scholar 

  11. Liu, Y.; Li, Y. Y.; Rajput, S.; Gilks, D.; Lari, L.; Galindo, P. L.; Weinert, M.; Lazarov, V. K.; Li, L. Tuning Dirac states by strain in the topological insulator Bi2Se3. Nat. Phys. 2014, 10, 294–299.

    Article  Google Scholar 

  12. Firpo, G.; Buatier de Mongeot, F.; Boragno, C.; Valbusa, U. High performance portable vacuum suitcase. Rev. Sci. Instrum. 2005, 76, 026108.

    Article  Google Scholar 

  13. Chen, W.; Kahn, A.; Soukiassian, P.; Mangat, P.; Gaines, J.; Ponzoni, C.; Olego, D. ZnSe(100) surface: Atomic configurations, composition, and surface dipole. Phys. Rev. B 1994, 49, 10790.

    Article  Google Scholar 

  14. Drews, D.; Schneider, A.; Zahn, D. R. T.; Wolfframm, D.; Evans, D. A. Raman monitoring of selenium decapping and subsequent antimony deposition on MBE-grown ZnSe(100). Appl. Surf. Sci. 1996, 104, 485–489.

    Article  Google Scholar 

  15. Hunger, R.; Schulmeyer, T.; Klein, A.; Jaegermann, W.; Sakurai, K.; Yamada, A.; Fons, P.; Matsubara, K.; Niki, S. An option for the surface science on Cu chalcopyrites: The selenium capping and decapping process. Surf. Sci. 2004, 557, 263–268.

    Article  Google Scholar 

  16. Xu, S. Y.; Neupane, M.; Liu, C.; Zhang, D.; Richardella, A.; Wray, L. A.; Alidoust, N.; Leandersson, M.; Balasubramanian, T.; Sanchez-Barriga, J. et al. Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator. Nat. Phys. 2012, 8, 616–622.

    Article  Google Scholar 

  17. Cao, Y.; Waugh, J. A.; Zhang, X. W.; Luo, J. W.; Wang, Q.; Reber, T. J.; Mo, S. K.; Xu, Z.; Yang, A.; Schneeloch, J. et al. Mapping the orbital wavefunction of the surface states in three-dimensional topological insulators. Nat. Phys. 2013, 9, 499–504.

    Article  Google Scholar 

  18. Wang, E.; Ding, H.; Fedorov, A. V.; Yao, W.; Li, Z.; Lv, Y. F.; Zhao, K.; Zhang, L. G.; Xu, Z. J.; Schneeloch, J. et al. Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor. Nat. Phys. 2013, 9, 620–624.

    Google Scholar 

  19. Liu, D.; Zhang, W. H.; Mou, D. X.; He, J. F.; Ou, Y. B.; Wang, Q. Y.; Li, Z.; Wang, L. L.; Zhao, L.; He, S. L. et al. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor. Nat. Commun. 2012, 3, 931.

    Article  Google Scholar 

  20. Zhang, T.; Cheng, P.; Chen, X.; Jia, J.F.; Ma, X. C.; He, K.; Wang, L. L.; Zhang, H. J.; Dai, X.; Fang, Z. et al. Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys. Rev. Lett. 2009, 103, 266803.

    Article  Google Scholar 

  21. Okada, Y.; Dhital, C.; Zhou, W. W.; Huemiller, E. D.; Lin, H.; Basak, S.; Bansil, A.; Huang, Y. B.; Ding, H.; Wang, Z. et al. Direct observation of broken time-reversal symmetry on the surface of a magnetically doped topological insulator. Phys. Rev. Lett. 2011, 106, 206805.

    Article  Google Scholar 

  22. Cheng, P.; Song, C. L.; Zhang, T.; Zhang, Y. Y.; Wang, Y. L.; Jia, J. F.; Wang, J.; Wang, Y. Y.; Zhu, B. F.; Chen, X. C. et al. Landau quantization of topological surface states in Bi2Se3. Phys. Rev. Lett. 2010, 105, 076801.

    Article  Google Scholar 

  23. Hanaguri, T.; Igarashi, K.; Kawamura, M.; Takagi, H.; Sasagawa, T. Momentum-resolved Landau-level spectroscopy of Dirac surface state in Bi2Se3. Phys. Rev. B 2010, 82, 081305.

    Article  Google Scholar 

  24. Coleman, R. V.; Giambattista, B.; Hansma, P. K.; Johnson, A.; McNairy, W. W.; Slough, C. G. Scanning tunnelling microscopy of charge-density waves in transition metal chalcogenides. Adv. Phys. 1988, 37, 559–644.

    Article  Google Scholar 

  25. Hess, H. F.; Robinson, R. B.; Dynes, R. C.; Valles, J. M.; Waszczak, J. V. Scanning-tunneling-microscope observation of the abrikosov flux lattice and the density of states near and inside a fluxoid. Phys. Rev. Lett. 1989, 62, 214–216.

    Article  Google Scholar 

  26. Chaikin, P. M.; Lubensky, T. C. Principles of condensed matter physics. Cambridge Univ Press: Cambridge, 2000.

    Google Scholar 

  27. Wang, Q. Y.; Li, Z.; Zhang, W. H.; Zhang, Z. C.; Zhang, J. S.; Li, W.; Ding, H.; Ou, Y. B.; Deng, P.; Chang, K. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chin. Phys. Lett. 2012, 29, 037402.

    Article  Google Scholar 

  28. Liu, Y.; Weinert, M.; Li, L. Spiral growth without dislocations: molecular beam epitaxy of the topological insulator Bi2Se3 on epitaxial graphene/SiC(0001). Phys. Rev. Lett. 2012, 108, 115501.

    Article  Google Scholar 

  29. Bianchi, M.; Guan, D. D.; Bao, S. N.; Mi, J. L.; Iversen, B. B.; King, P. D. C.; Hofmann, P Coexistence of the topological state and a two-dimensional electron gas on the surface of Bi2Se3. Nat. Commun. 2010, 1, 128.

    Article  Google Scholar 

  30. Bansal, N.; Kim, Y. S.; Edrey, E.; Brahlek, M.; Horibe, Y.; IidaD, K.; Tanimura, M.; Li, G. H.; Feng, T.; Lee, H. D. et al. Epitaxial growth of topological insulator Bi2Se3 film on Si(111) with atomically sharp interface. Thin Solid Films 2011, 520, 224–229.

    Article  Google Scholar 

  31. Bansal, N.; Kim, Y. S.; Brahlek, M.; Edrey, E.; Oh, S. Thickness-independent transport channels in topological insulator Bi2Se3thin films. Phys. Rev. Lett. 2012, 109, 116804.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weida Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Wang, W., Brahlek, M. et al. Restoring pristine Bi2Se3 surfaces with an effective Se decapping process. Nano Res. 8, 1222–1228 (2015). https://doi.org/10.1007/s12274-014-0607-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0607-8

Keywords

Navigation