Skip to main content
Log in

Interfacial state induced ultrasensitive ultraviolet light photodetector with resolved flux down to 85 photons per second

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We present an ultrasensitive ultraviolet (UV) detector based on a p-type ZnS nanoribbon (NR)/indium tin oxide (ITO) Schottky barrier diode (SBD). The device exhibits a pseudo-photovoltaic behavior which can allow the SBD to detect UV light irradiation with incident power of 6 × 10−17 W (∼85 photons/s on the NR) at room temperature, with excellent reproducibility and stability. The corresponding detectivity and photoconductive gain are calculated to be 3.1 × 1020 cm·Hz1/2·W−1 and 6.6 × 105, respectively. It is found that the presence of the trapping states at the p-ZnS NR/ITO interface plays a crucial role in determining the ultrahigh sensitivity of this nanoSBDs. Based on our theoretical calculation, even ultra-low photon fluxes on the order of several tens of photons could induce a significant change in interface potential and consequently cause a large photocurrent variation. The present study provides new opportunities for developing high-performance optoelectronic devices in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Monroy, E.; Omnès, F.; Calle, F. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 2003, 18, R33–R51.

    Article  Google Scholar 

  2. Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photonics 2009, 3, 696–705.

    Article  Google Scholar 

  3. Katz, J. Detectors for optical communications: A review. TDA Progress Report 1983, 42–75, 21–38.

    Google Scholar 

  4. Bai, X.; Liu, H.-D.; McIntosh, D. C.; Campbell, J. C. High-detectivity and high-single-photon-detection-efficiency 4H-SiC avalanche photodiodes. IEEE J. Quantum Elec. 2009, 45, 300–303.

    Article  Google Scholar 

  5. Yan, F.; Xin, X. B.; Aslam, S.; Zhao, Y. G.; Franz, D.; Zhao, J. H.; Weiner, M. 4H-SiC UV photo detectors with large area and very high specific detectivity. IEEE J. Quantum Elec. 2004, 40, 1315–1320.

    Article  Google Scholar 

  6. Zhu, H.; Chen, X.; Cai, J.; Wu, Z. 4H-SiC ultraviolet avalanche photodetectors with low breakdown voltage and high gain. Solid State Elec. 2009, 53, 7–10.

    Article  Google Scholar 

  7. Verevkin, A.; Zhang, J.; Sobolewski, R.; Lipatov, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Smirnov, K.; Gol’tsman, G. N.; Semenov, A. Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range. Appl. Phys. Lett. 2002, 80, 4687–4689.

    Article  Google Scholar 

  8. Korneev, A.; Kouminov, P.; Matvienko, V.; Chulkova, G.; Smirnov, K.; Voronov, B.; Gol’tsman, G. N.; Currie, M.; Lo, W.; Wilsher, K.; et al. Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors. Appl. Phys. Lett. 2004, 84, 5338–5340.

    Article  Google Scholar 

  9. Xu, S.; Wang, Z. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. 2011, 4, 1013–1098.

    Article  Google Scholar 

  10. Huang, K.; Zhang, Q.; Yang, F.; He, D. Ultraviolet photoconductance of a single hexagonal WO3 nanowire. Nano Res. 2010, 3, 281–287.

    Article  Google Scholar 

  11. Luo, L. B.; Liang, F. X.; Jie, J. S. Sn-catalyzed synthesis of SnO2 nanowires and their optoelectronic characteristics. Nanotechnology 2011, 22, 485701.

    Article  Google Scholar 

  12. Liu, Z.; Luo, T.; Liang, B.; Chen, G.; Yu, G.; Xie, X.; Chen, D.; Shen, G. High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res. 2013, 6, 775–783.

    Article  Google Scholar 

  13. Kind, H.; Yan, H. Q.; Messer, B.; Law, M.; Yang, P. D. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14, 158–160.

    Article  Google Scholar 

  14. Jain, V.; Nowzari, A.; Wallentin, J.; Borgström, M. T.; Messing, M. E.; Asoli, D.; Graczyk, M.; Witzigmann, B.; Capasso, F.; Samuelson, L.; et al. Study of photocurrent generation in InP nanowire-based p-i-n photodetectors. Nano Res. 2014, 7, 1–9.

    Article  Google Scholar 

  15. Yang, C.; Barrelet, C. J.; Capasso, F.; Lieber, C. M. Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. Nano Lett. 2006, 6, 2929–2934.

    Article  Google Scholar 

  16. Hayden, O.; Agarwal, R.; Lieber, C. M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat. Mater. 2006, 5, 352–356.

    Article  Google Scholar 

  17. Yan, R. X.; Gargas, D.; Yang, P. D. Nanowire photonics. Nat. Photonics 2009, 3, 569–576.

    Article  Google Scholar 

  18. Memis, O. G.; Katsnelson, A.; Kong, S.-C.; Mohseni, H.; Yan, M.; Zhang, S.; Hossain, T.; Jin, N.; Adesida, I. A photon detector with very high gain at low bias and at room temperature. Appl. Phys. Lett. 2007, 91, 171112.

    Article  Google Scholar 

  19. Memis, O. G.; Kohoutek, J.; Wu, W.; Gelfand, R. M.; Mohseni, H. Signal-to-noise performance of a short-wave infrared nanoinjection imager. Opt. Lett. 2010, 35, 2699–2701.

    Article  Google Scholar 

  20. Nie, B.; Hu, J. G.; Luo, L. B.; Xie, C.; Zeng, L. H.; Lv, P.; Li, F. Z.; Jie, J. S.; Feng, M.; Wu, C. Y.; et al.; Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. Small 2013, 9, 2872–2879.

    Article  Google Scholar 

  21. González-Posada, F.; Songmuang, R.; Den Hertog, M.; Monroy, E. Room-temperature photodetection dynamics of single GaN nanowires. Nano Lett. 2012, 2, 172–176.

    Article  Google Scholar 

  22. Yu, Y.; Jie, J.; Jiang, P.; Wang, L.; Wu, C.; Peng, Q.; Zhang, X.; Wang, Z.; Xie, C.; Wu, D.; et al. High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties. J. Mater. Chem. 2011, 21, 12632–12638.

    Article  Google Scholar 

  23. Jiang, P.; Jie, J.; Yu, Y.; Wang, Z.; Xie, C.; Zhang, X.; Wu, C.; Wang, L.; Zhu, Z.; Luo, L. Aluminium-doped n-type ZnS nanowires as high-performance UV and humidity sensors J. Mater. Chem. 2012, 22, 6856–6561.

    Article  Google Scholar 

  24. Chen, R. S.; Chen, H. Y.; Lu, C. Y.; Chen, K. H.; Chen, C. P.; Chen, L. C.; Yang, Y. J. Ultrahigh photocurrent gain in m-axial GaN nanowires. Appl. Phys. Lett. 2007, 91, 223106.

    Article  Google Scholar 

  25. Calarco, R.; Marso, M.; Richter, T.; Aykanat, A. I.; Meijers, R.; Hart, A. V.; Stoica, T.; Lüth, H. Size-dependent photoconductivity in MBE-grown GaN-nanowires. Nano Lett. 2005, 5, 981–984.

    Article  Google Scholar 

  26. Jian, W.; Zhuang, J.; Zhang, D.; Dai, J.; Yang, W.; Bai, Y. Synthesis of highly luminescent and photostable ZnS:Ag nanocrystals under microwave irradiation. Mater. Chem. Phys. 2006, 99, 494–497.

    Article  Google Scholar 

  27. Yu, Y.; Zeng, L.; Jiang, Y.; Jie, J. Ultralow contact resistivity of Cu/Au with p-type ZnS nanoribbons for nanoelectronic applications. IEEE Elec. Dev. Lett. 2013, 34, 810–812.

    Article  Google Scholar 

  28. Soylu, M.; Yakuphanoglu, F. Photovoltaic and interface state density properties of the Au/n-GaAs Schottky barrier solar cell. Thin Solid Films 2011, 519, 1950–1954.

    Article  Google Scholar 

  29. Tuğluoğlu, N.; Yakuphanoglu, F.; Karadeniz, S. Determination of the interface state density of the In/p-Si Schottky diode by conductance and capacitance-frequency characteristics. Phys. B 2007, 393, 56–60.

    Article  Google Scholar 

  30. Okutan, M.; Basaran, E.; Yakuphanoglu, F. Electronic and interface state density distribution properties of Ag/p-Si Schottky diode. Appl. Surf. Sci. 2005, 252, 1966–1973.

    Article  Google Scholar 

  31. Kim, W.; Javey, A.; Vermesh, O.; Wang, O.; Li, Y. M.; Dai, H. J. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 2003, 3, 193–198.

    Article  Google Scholar 

  32. Ghosh, T.; Basak, D. Nonvolatile memory effect in a Au/Cu-ZnO/p-Si type of metal-insulator-semiconductor structure. IEEE Elec. Dev. Lett. 2011, 32, 1746–1748.

    Article  Google Scholar 

  33. Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices. Wiley-Interscience: New Jersey, 2007.

    Google Scholar 

  34. Schroder, D. K. Semiconductor Material and Device Characterization. John Wiley & Sons, Inc.: New Jersey, 2006.

    Google Scholar 

  35. Katz, O.; Garber, V.; Meyler, B.; Bahir, G.; Salzman, J. Gain mechanism in GaN Schottky ultraviolet detectors. Appl. Phys. Lett. 2001, 79, 1417–1419.

    Article  Google Scholar 

  36. Katz, O.; Bahir, G.; Salzman, J. Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors. Appl. Phys. Lett. 2004, 84, 4092–4094.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin-Bao Luo, Jian-Sheng Jie or Shu-Hong Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, YQ., Luo, LB., Wang, MZ. et al. Interfacial state induced ultrasensitive ultraviolet light photodetector with resolved flux down to 85 photons per second. Nano Res. 8, 1098–1107 (2015). https://doi.org/10.1007/s12274-014-0587-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0587-8

Keywords

Navigation