Skip to main content
Log in

Mesoporous silica nanorods intrinsically doped with photosensitizers as a multifunctional drug carrier for combination therapy of cancer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Mesoporous silica nanoparticles (MSNs) have attracted tremendous attention in recent years as drug delivery carriers due to their large surface areas, tunable sizes, facile modification and considerable biocompatibility. In this work, we fabricate an interesting type of MSNs which are intrinsically doped with photosensitizing molecules, chlorin e6 (Ce6). By increasing the amount of Ce6 doped inside the silica matrix, it is found that the morphology of MSNs changes from spheres to rod-like shapes. The obtained Ce6-doped mesoporous silica nanorods (CMSNRs) are not only able to produce singlet oxygen for photodynamic therapy, but can also serve as a drug delivery platform with high drug loading capacity by utilizing their mesoporous structure. Compared to spherical nanoparticles, it is found that CMSNRs with a larger aspect ratio show much faster uptake by cancer cells. With doxorubicin (DOX) employed as a model drug, the combined photodynamic and chemotherapy is carried out, achieving synergistic anti-tumor effects both in vitro and in vivo. Our study presents a new design of an MSN-based drug delivery platform, which intrinsically is fluorescent and able to serve as a photodynamic agent, promising for future imaging-guided combination therapy of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang, F. Q.; Li, L. L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504–1534.

    Article  Google Scholar 

  2. Chen, Y.; Chen, H. R.; Shi, J. L. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25, 3144–3176.

    Article  Google Scholar 

  3. Yang, J. P.; Shen, D. K.; Zhou, L.; Li, W.; Li, X. M.; Yao, C.; Wang, R.; El-Toni, A. M.; Zhang, F.; Zhao, D. Y. Spatially confined fabrication of core-shell gold nanocages@mesoporous silica for near-infrared controlled photothermal drug release. Chem. Mater. 2013, 25, 3030–3037.

    Article  Google Scholar 

  4. Zhang, F.; Braun, G. B.; Pallaoro, A.; Zhang, Y. C.; Shi, Y. F.; Cui, D. X.; Moskovits, M.; Zhao, D. Y.; Stucky, G. D. Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy. Nano Lett. 2011, 12, 61–67.

    Article  Google Scholar 

  5. Luo, Z.; Hu, Y.; Xin, R. L.; Zhang, B. L.; Li, J. H.; Ding, X. W.; Hou, Y. H.; Yang, L.; Cai, K. Y. Surface functionalized mesoporous silica nanoparticles with natural proteins for reduced immunotoxicity. J. Biomed. Mater. Res. A 2013, in press, DOI: 10.1002/jbm.a.35049.

    Google Scholar 

  6. Xie, J.; Lee, S.; Chen, X. Y. Nanoparticle-based theranostic agents. Adv. Drug Delivery Rev. 2010, 62, 1064–1079.

    Article  Google Scholar 

  7. Wang, L.; Zhao, W. J.; Tan, W. H. Bioconjugated silica nanoparticles: Development and applications. Nano Res. 2008, 1, 99–115.

    Article  Google Scholar 

  8. Estévez, M. C.; O’Donoghue, M. B.; Chen, X. L.; Tan, W. L. Highly fluorescent dye-doped silica nanoparticles increase flow cytometry sensitivity for cancer cell monitoring. Nano Res. 2009, 2, 448–461.

    Article  Google Scholar 

  9. Huang, C. M.; Cheng, S. H.; Jeng, U. S.; Yang, C. S.; Lo, L. W. Formation of CdSe/CdS/ZnS-Au/SiO2 dual-yolk/shell nanostructures through a Trojan-type inside-out etching strategy. Nano Res. 2012, 5, 654–666.

    Article  Google Scholar 

  10. Zhang, Q.; Ge, J. P.; Goebl, J.; Hu, Y. X.; Lu, Z. D.; Yin, Y. D. Rattle-type silica colloidal particles prepared by a surface-protected etching process. Nano Res. 2009, 2, 583–591.

    Article  Google Scholar 

  11. Qian, R. C.; Ding, L.; Ju, H. X. Switchable fluorescent imaging of intracellular telomerase activity using telomerase-responsive mesoporous silica nanoparticle. J. Am. Chem. Soc. 2013, 135, 13282–13285.

    Article  Google Scholar 

  12. Sreejith, S.; Ma, X.; Zhao, Y. L. Graphene oxide wrapping on squaraine-loaded mesoporous silica nanoparticles for bioimaging. J. Am. Chem. Soc. 2012, 134, 17346–17349.

    Article  Google Scholar 

  13. Fan, W. P.; Shen, B.; Bu, W. B.; Chen, F.; Zhao, K. L.; Zhang, S. J.; Zhou, L. P.; Peng, W. J.; Xiao, Q. F.; Xing, H. Y. et al. Rattle-structured multifunctional nanotheranostics for synergetic chemo-/radiotherapy and simultaneous magnetic/luminescent dual-mode imaging. J. Am. Chem. Soc. 2013, 135, 6494–6503.

    Article  Google Scholar 

  14. Chen, F.; Hong, H.; Zhang, Y.; Valdovinos, H. F.; Shi, S. X.; Kwon, G. S.; Theuer, C. P.; Barnhart, T. E.; Cai, W. B. In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano 2013, 7, 9027–9039.

    Article  Google Scholar 

  15. Shi, S. X.; Chen, F.; Cai, W. B. Biomedical applications of functionalized hollow mesoporous silica nanoparticles: Focusing on molecular imaging. Nanomedicine 2013, 8, 2027–2039.

    Article  Google Scholar 

  16. Fang, W. J.; Yang, J.; Gong, J. W.; Zheng, N. F. Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@Ag nanoparticles. Adv. Funct. Mater. 2012, 22, 842–848.

    Article  Google Scholar 

  17. Gao, Y.; Chen, Y.; Ji, X. F.; He, X. Y.; Yin, Q.; Zhang, Z. W.; Shi, J. L.; Li, Y. P. Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano 2011, 5, 9788–9798.

    Article  Google Scholar 

  18. Lee, C. H.; Cheng, S. H.; Huang, I. P.; Souris, J. S.; Yang, C. S.; Mou, C. Y.; Lo, L. W. Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angew. Chem. Int. Ed. 2010, 49, 8214–8219.

    Article  Google Scholar 

  19. Zhao, Y.; Lin, L. N.; Lu, Y.; Chen, S. F.; Dong, L.; Yu, S. H. Templating synthesis of preloaded doxorubicin in hollow mesoporous silica nanospheres for biomedical applications. Adv. Mater. 2010, 22, 5255–5259.

    Article  Google Scholar 

  20. Ma, X.; Sreejith, S.; Zhao, Y. L. Spacer intercalated disassembly and photodynamic activity of zinc phthalocyanine inside nanochannels of mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 2013, 5, 12860–12868.

    Article  Google Scholar 

  21. Luo, Z.; Cai, K. Y.; Hu, Y.; Zhao, L.; Liu, P.; Duan, L.; Yang, W. H. Mesoporous silica nanoparticles end-capped with collagen: Redox-responsive nanoreservoirs for targeted drug delivery. Angew. Chem. Int. Ed. 2011, 50, 640–643.

    Article  Google Scholar 

  22. Kim, M. H.; Na, H. K.; Kim, Y. K.; Ryoo, S. R.; Cho, H. S.; Lee, K. E.; Jeon, H.; Ryoo, R.; Min, D. H. Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano 2011, 5, 3568–3576.

    Article  Google Scholar 

  23. Suwalski, A.; Dabboue, H.; Delalande, A.; Bensamoun, S. F.; Canon, F.; Midoux, P.; Saillant, G.; Klatzmann, D.; Salvetat, J. P.; Pichon, C. Accelerated achilles tendon healing by PDGF gene delivery with mesoporous silica nanoparticles. Biomaterials 2010, 31, 5237–5245.

    Article  Google Scholar 

  24. Li, Z. W.; Wang, C.; Cheng, L.; Gong, H.; Yin, S. N.; Gong, Q. F.; Li, Y. G.; Liu, Z. PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy. Biomaterials 2013, 34, 9160–9170.

    Article  Google Scholar 

  25. Wang, C.; Tao, H. Q.; Cheng, L.; Liu, Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 2011, 32, 6145–6154.

    Google Scholar 

  26. Cakmak, Y.; Kolemen, S.; Duman, S.; Dede, Y.; Dolen, Y.; Kilic, B.; Kostereli, Z.; Yildirim, L. T.; Dogan, A. L.; Guc, D. et al. Designing excited states: Theory-guided access to efficient photosensitizers for photodynamic action. Angew. Chem. Int. Ed. 2011, 50, 11937–11941.

    Article  Google Scholar 

  27. Park, S. Y.; Baik, H. J.; Oh, Y. T.; Oh, K. T.; Youn, Y. S.; Lee, E. S. A smart polysaccharide/drug conjugate for photodynamic therapy. Angew. Chem. Int. Ed. 2011, 50, 1644–1647.

    Article  Google Scholar 

  28. Huang, P.; Lin, J.; Wang, S. J.; Zhou, Z. J.; Li, Z. M.; Wang, Z.; Zhang, C. L.; Yue, X. Y.; Niu, G.; Yang, M. et al. Photosensitizer-conjugated silica-coated gold nanoclusters for fluorescence imaging-guided photodynamic therapy. Biomaterials 2013, 34, 4643–4654.

    Article  Google Scholar 

  29. Celli, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.; Verma, S.; Pogue, B. W.; Hasan, T. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem. Rev. 2010, 110, 2795–2838.

    Article  Google Scholar 

  30. Meng, H.; Liong, M.; Xia, T.; Li, Z. X.; Ji, Z. X.; Zink, J. I.; Nel, A. E. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 2010, 4, 4539–4550.

    Article  Google Scholar 

  31. Chen, Y. W.; Chen, P. J.; Hu, S. H.; Chen, I. W.; Chen, S. Y. NIR-triggered synergic photo-chemothermal therapy delivered by reduced graphene oxide/carbon/mesoporous silica nanocookies. Adv. Funct. Mater. 2014, 24, 451–459.

    Article  Google Scholar 

  32. Couleaud, P.; Morosini, V.; Frochot, C.; Richeter, S.; Raehm, L.; Durand, J. O. Silica-based nanoparticles for photodynamic therapy applications. Nanoscale 2010, 2, 1083–1095.

    Article  Google Scholar 

  33. Wang, T. T.; Zhang, L. Y.; Su, Z. M.; Wang, C. G.; Liao, Y.; Fu, Q. Multifunctional hollow mesoporous silica nanocages for cancer cell detection and the combined chemotherapy and photodynamic therapy. ACS Appl. Mater. Interfaces 2011, 3, 2479–2486.

    Article  Google Scholar 

  34. He, Q. J.; Shi, J. L. MSN anti-cancer nanomedicines: Chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Adv. Mater. 2014, 26, 391–411.

    Article  Google Scholar 

  35. Lee, J.; Park, J.; Singha, K.; Kim, W. J. Mesoporous silica nanoparticle facilitated drug release through cascade photosensitizer activation and cleavage of singlet oxygen sensitive linker. Chem. Commun. 2013, 49, 1545–1547.

    Article  Google Scholar 

  36. Hayashi, K.; Nakamura, M.; Ishimura, K. Silica-porphyrin hybrid nanotubes for in vivo cell tracking by near-infrared fluorescence imaging. Chem. Commun. 2012, 48, 3830–3832.

    Article  Google Scholar 

  37. Hayashi, K.; Nakamura, M.; Miki, H.; Ozaki, S.; Abe, M.; Matsumoto, T.; Ishimura, K. Near-infrared fluorescent silica/porphyrin hybrid nanorings for in vivo cancer imaging. Adv. Funct. Mater. 2012, 22, 3539–3546.

    Article  Google Scholar 

  38. Rossi, L. M.; Silva, P. R.; Vono, L. L. R.; Fernandes, A. U.; Tada, D. B.; Baptista, M. S. Protoporphyrin IX nanoparticle carrier: Preparation, optical properties, and singlet oxygen generation. Langmuir 2008, 24, 12534–12538.

    Article  Google Scholar 

  39. Cheng, S. H.; Lee, C. H.; Yang, C. S.; Tseng, F. G.; Mou, C. Y.; Lo, L. W. Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy: Potential cancer theranostics. J. Mater. Chem. 2009, 19, 1252–1257.

    Article  Google Scholar 

  40. Tu, H. L.; Lin, Y. S.; Lin, H. Y.; Hung, Y.; Lo, L. W.; Chen, Y. F.; Mou, C. Y. In vitro studies of functionalized mesoporous silica nanoparticles for photodynamic therapy. Adv. Mater. 2009, 21, 172–177.

    Article  Google Scholar 

  41. Zhang, R. R.; Wu, C. L.; Tong, L. L.; Tang, B.; Xu, Q. H. Multifunctional core-shell nanoparticles as highly efficient imaging and photosensitizing agents. Langmuir 2009, 25, 10153–10158.

    Article  Google Scholar 

  42. Meng, H.; Yang, S.; Li, Z. X.; Xia, T.; Chen, J.; Ji, Z. X.; Zhang, H. Y.; Wang, X.; Lin, S. J.; Huang, C. et al. Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism. ACS Nano 2011, 5, 4434–4447.

    Article  Google Scholar 

  43. Huang, X. L.; Teng, X.; Chen, D.; Tang, F. Q.; He, J. Q. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010, 31, 438–448.

    Article  Google Scholar 

  44. Hassan, M.; Klaunberg, B. A. Biomedical applications of fluorescence imaging in vivo. Comparative Med. 2004, 54, 635–644.

    Google Scholar 

  45. Zhu, Z.; Tang, Z. W.; Phillips, J. A.; Yang, R. H.; Wang, H.; Tan, W. H. Regulation of singlet oxygen generation using single-walled carbon nanotubes. J. Am. Chem. Soc. 2008, 130, 10856–10857.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youyong Li or Zhuang Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Gong, H., Qian, X. et al. Mesoporous silica nanorods intrinsically doped with photosensitizers as a multifunctional drug carrier for combination therapy of cancer. Nano Res. 8, 751–764 (2015). https://doi.org/10.1007/s12274-014-0558-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0558-0

Keywords

Navigation