Skip to main content
Log in

Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Direct formic acid fuel cells (DFAFCs) allow highly efficient low temperature conversion of chemical energy into electricity and are expected to play a vital role in our future sustainable society. However, the massive precious metal usage in current membrane electrode assembly (MEA) technology greatly inhibits their actual applications. Here we demonstrate a new type of anode constructed by confining highly active nanoengineered catalysts into an ultra-thin catalyst layer with thickness around 100 nm. Specifically, an atomic layer of platinum is first deposited onto nanoporous gold (NPG) leaf to achieve high utilization of Pt and easy accessibility of both reactants and electrons to active sites. These NPG-Pt core/shell nanostructures are further decorated by a sub-monolayer of Bi to create highly active reaction sites for formic acid electro-oxidation. Thus obtained layer-structured NPG-Pt-Bi thin films allow a dramatic decrease in Pt usage down to 3 μg·cm−2, while maintaining very high electrode activity and power performance at sufficiently low overall precious metal loading. Moreover, these electrode materials show superior durability during half-year test in actual DFAFCs, with remarkable resistance to common impurities in formic acid, which together imply their great potential in applications in actual devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352.

    Article  Google Scholar 

  2. Jacobson, M. Z.; Colella, W. G.; Golden, D. M. Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science 2005, 308, 1901–1905.

    Article  Google Scholar 

  3. Service, R. F. Shrinking fuel cells promise power in your pocket. Science 2002, 296, 1222–1224.

    Article  Google Scholar 

  4. Miesse, C. M.; Jung, W. S.; Jeong, K. J.; Lee, J. K.; Lee, J.; Han, J.; Yoon, S. P.; Nam, S. W.; Lim, T. H.; Hong, S. A. Direct formic acid fuel cell portable power system for the operation of a laptop computer. J. Power Sources 2006, 162, 532–540.

    Article  Google Scholar 

  5. Yu, X. W.; Pickup, P. G. Recent advances in direct formic acid fuel cells (DFAFC). J. Power Sources 2008, 182, 124–132.

    Article  Google Scholar 

  6. Rice, C.; Ha, R. I.; Masel, R. I.; Waszczuk, P.; Wieckowski, A.; Barnard, T. Direct formic acid fuel cells. J. Power Sources 2002, 111, 83–89.

    Article  Google Scholar 

  7. Jeong, K. J.; Miesse, C. A.; Choi, J. H.; Lee, J.; Han, J.; Yoon, S. P.; Nam, S. W.; Lim, T. H.; Lee, T. G. Fuel crossover in direct formic acid fuel cells. J. Power Sources 2007, 168, 119–125.

    Article  Google Scholar 

  8. Sealy, C. The problem with platinum. Mater. Today 2008, 11, 65–68.

    Article  Google Scholar 

  9. Gasteiger, H. A.; Gu, W.; Makharia, R.; Mathias M. F.; Sompalli, B. Beginning-of-life MEA performance-efficiency loss contributions. In Handbook of Fuel Cells. Vielstich, W.; Gasteiger, H. A.; Lamm A.; Yokokawa, H., Eds.; John Wiley & Sons: New Jersey, 2010; pp 1–18.

    Google Scholar 

  10. Beden, B.; Bewick, A.; Lamy, C. A study by electrochemically modulated infrared reflectance spectroscopy of the electrosorption of formic acid at a platinum electrode. J. Electroanal. Chem. Interfacial Electrochem. 1983, 148, 147–160.

    Article  Google Scholar 

  11. Casado-Rivera, E.; Volpe, D. J.; Alden, L.; Lind, C.; Downie, C.; Vázquez-Alvarez, T.; Angelo, A. C. D.; DiSalvo, F. J.; Abruña, H. D. Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J. Am. Chem. Soc. 2004, 126, 4043–4049.

    Article  Google Scholar 

  12. Clavilier, J. Heterogeneous electrocatalysis on well defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms: Part I. Formic acid oxidation on the Pt(111)-Bi system. J. Electroanal. Chem. 1989, 258, 89–100.

    Article  Google Scholar 

  13. Pletcher, D.; Solis, V. A further investigation of the catalysis by lead ad-atoms of formic acid oxidation at a platinum anode. J. Electroanal. Chem. 1982, 131, 309–323.

    Article  Google Scholar 

  14. Wang, R. Y.; Wang, C.; Cai, W. B.; Ding, Y. Ultralow-platinum-loading high-performance nanoporous electrocatalysts with nanoengineered surface structures. Adv. Mater. 2010, 22, 1845–1848.

    Article  Google Scholar 

  15. Ji, X. L.; Lee, K. T.; Holden, R.; Zhang, L.; Zhang, J. J.; Botton, G. A.; Couillard, M.; Nazar, L. F. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat. Chem. 2010, 2, 286–293.

    Article  Google Scholar 

  16. Hwang, S. M.; Bonevich, J. E.; Kim, J. J.; Moffat, T. P. Formic acid oxidation on Pt100−x Pbx thin films electrodeposited on Au. J. Electrochem. Soc. 2011, 158, B1019–B1028.

    Article  Google Scholar 

  17. Uhm, S.; Chung, S. T.; Lee, J. Activity of Pt anode catalyst modified by underpotential deposited Pb in a direct formic acid fuel cell. Electrochem. Commun. 2007, 9, 2027–2031.

    Article  Google Scholar 

  18. Uhm, S.; Lee, H. J.; Kwon, Y.; Lee, J. A stable and costeffective anode catalyst structure for formic acid fuel cells. Angew. Chem. Int. Ed. 2008, 47, 10163–10166.

    Article  Google Scholar 

  19. Zheng, F. L.; Wong, W. T.; Yung, K. F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.

    Article  Google Scholar 

  20. Zhang, Q.; Guo, X.; Liang, Z. X.; Zeng, J. H.; Yang, J.; Liao, S. J. Hybrid PdAg alloy-Au nanorods: Controlled growth, optical properties and electrochemical catalysis. Nano Res. 2013, 6, 571–580.

    Article  Google Scholar 

  21. Zhang, L.; Chen, D. Q.; Jiang, Z. Y.; Zhang, J. W.; Xie, S. F.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. Facile syntheses and enhanced electrocatalytic activities of Pt nanocrystals with {hkk} high-index surfaces. Nano Res. 2012, 5, 181–189.

    Article  Google Scholar 

  22. Yu, X. W.; Pickup, P. G. Pb and Sb modified Pt/C catalysts for direct formic acid fuel cells. Electrochim. Acta 2010, 55, 7354–7361.

    Article  Google Scholar 

  23. Yu, X. W.; Pickup, P. G. Carbon supported PtBi catalysts for direct formic acid fuel cells. Electrochim. Acta 2011, 56, 4037–4043.

    Article  Google Scholar 

  24. Wu, J. J.; Hou, Y. L.; Gao, S. Controlled synthesis and multifunctional properties of FePt-Au heterostructures. Nano Res. 2011, 4, 836–848.

    Article  Google Scholar 

  25. Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.

    Article  Google Scholar 

  26. Thiele, S.; Zengerle, R.; Ziegler, C. Nano-morphology of a polymer electrolyte fuel cell catalyst layer-Imaging, reconstruction and analysis. Nano Res. 2011, 4, 849–860.

    Article  Google Scholar 

  27. Wang, C.; Waje, M.; Wang, X.; Tang, J. M.; Haddon, R. C.; Yan, Y. S. Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Lett. 2004, 4, 345–348.

    Article  Google Scholar 

  28. Debe, M. K.; Schmoeckel, A. K.; Vernstrorn G. D.; Atanasoski, R. High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J. Power Sources 2006, 161, 1002–1011.

    Article  Google Scholar 

  29. Gancs, L.; Kobayashi, T.; Debe, M. K.; Atanasoski, R.; Wieckowski, A. Crystallographic characteristics of nanostructured thin-film fuel cell electrocatalysts: A HRTEM study. Chem. Mater. 2008, 20, 2444–2454.

    Article  Google Scholar 

  30. Meng, H.; Xie, F. Y.; Chen, J.; Shen, P. K. Electrodeposited palladium nanostructure as novel anode for direct formic acid fuel cell. J. Mater. Chem. 2011, 21, 11352–11358.

    Article  Google Scholar 

  31. Ding, Y.; Kim, Y. J.; Erlebacher, J. Nanoporous gold leaf: “Ancient technology”/advanced material. Adv. Mater. 2004, 16, 1897–1900.

    Article  Google Scholar 

  32. Ding, Y.; Chen, M. W.; Erlebacher, J. Metallic mesoporous nanocomposites for electrocatalysis. J. Am. Chem. Soc. 2004, 126, 6876–6877.

    Article  Google Scholar 

  33. Fujita, T.; Okada, H.; Koyama, K.; Watanabe, K.; Maekawa, S.; Chen, M. W. Unusually small electrical resistance of three-dimensional nanoporous gold in external magnetic fields. Phys. Rev. Lett. 2008, 101, 166601.

    Article  Google Scholar 

  34. Zhang, X. M.; Ding, Y. Unsupported nanoporous gold for heterogeneous catalysis. Catal. Sci. Technol. 2013, 3, 2862–2868.

    Article  Google Scholar 

  35. Liu, P. P.; Ge, X. B.; Wang, R. Y.; Ma, H. Y.; Ding, Y. Facile fabrication of ultrathin Pt overlayers onto nanoporous metal membranes via repeated Cu UPD and in situ redox replacement reaction. Langmuir 2009, 25, 561–567.

    Article  Google Scholar 

  36. Wang, R. Y.; Liu, J. G.; Liu, P.; Bi, X. X.; Yan, X. L.; Wang, W. X.; Ge, X. B.; Chen, M. W.; Ding, Y. Dispersing Pt atoms onto nanoporous gold for high performance direct formic acid fuel cells. Chem. Sci. 2014, 5, 403–409.

    Article  Google Scholar 

  37. Samjeské, G.; Miki, A.; Ye, S.; Osawa, M. Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. B 2006, 110, 16559–16566.

    Article  Google Scholar 

  38. López-Cudero, A.; Vidal-Iglesias, F. J.; Solla-Gullón, J.; Herrero, E.; Aldaz, A.; Feliu, J. M. Formic acid electrooxidation on Bi-modified polyoriented and preferential (111) Pt nanoparticles. Phys. Chem. Chem. Phys. 2009, 11, 416–424.

    Article  Google Scholar 

  39. Leiva, E.; Iwasita, T.; Herrero, E.; Feliu, J. M. Effect of adatoms in the electrocatalysis of HCOOH oxidation. A theoretical model. Langmuir 1997, 13, 6287–6293.

    Article  Google Scholar 

  40. Morgan, W. E.; Stec, W. J.; Van Wazer, J. R. Inner-orbital binding-energy shifts of antimony and bismuth compounds. Inorg. Chem. 1973, 12, 953–955.

    Article  Google Scholar 

  41. Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 2005, 56, 9–35.

    Article  Google Scholar 

  42. Mikołajczuk, A.; Borodzinski, A.; Kedzierzawski, P.; Stobinski, L.; Mierzwa, B.; Dziura, R. Deactivation of carbon supported palladium catalyst in direct formic acid fuel cell. Appl. Surf. Sci. 2011, 257, 8211–8214.

    Article  Google Scholar 

  43. Liu, J. G.; Zhao, T. S.; Chen, R.; Wong, C. W. The effect of methanol concentration on the performance of a passive DMFC. Electrochem. Commun. 2005, 7, 288–294.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ding.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Liu, J., Liu, P. et al. Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells. Nano Res. 7, 1569–1580 (2014). https://doi.org/10.1007/s12274-014-0517-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0517-9

Keywords

Navigation