Skip to main content
Log in

Tumor endothelial cells as a potential target of metronomic chemotherapy

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Drug resistance and toxic side effects are major therapeutic hurdles affecting cancer patients receiving conventional chemotherapy based on the maximum tolerated dose. Metronomic chemotherapy (MCT), a new therapeutic approach developed to avoid these problems generally, consists of the continuous administration of low-dose cytotoxic agents without extended intervals. This therapy targets the tumor microenvironment, rather than exerting a direct effect on tumor cells. As a result, the MCT regimen functionally impairs tumor endothelial cells and circulating endothelial progenitor cells, leading to tumor dormancy via anti-angiogenesis. Over the past 10 years, several studies have highlighted the impact of MCT on the tumor microenvironment and angiogenesis and demonstrated its potential as a switch from the pro-angiogenic to the anti-angiogenic state. However, the mechanisms of action are still obscure. Here, we systematically review the evidence regarding the anti-angiogenic potential of MCT as a crucial determinant of tumor dormancy and cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aird WC (2006) Mechanisms of endothelial cell heterogeneity in health and disease. Circ Res 98:159–162

    Article  CAS  PubMed  Google Scholar 

  • Allegrini G, Falcone A, Fioravanti A, Barletta MT, Orlandi P, Loupakis F, Cerri E, Masi G, Di Paolo A, Kerbel RS, Danesi R, Del Tacca M, Bocci G (2008) A pharmacokinetic and pharmacodynamic study on metronomic irinotecan in metastatic colorectal cancer patients. Br J Cancer 98:1312–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allegrini G, Di Desidero T, Barletta MT, Fioravanti A, Orlandi A, Canu B, Chericoni S, Loupakis F, Di Paolo A, Masi G, Fontana A, Lucchesi S, Arrighi G, Giusiani M, Ciarlo A, Brandi G, Danesi R, Kerbel RS, Falcone A, Bocci G (2012) Clinical, pharmacokinetic and pharmacodynamic evaluations of metronomic UFT and cyclophosphamide plus celecoxib in patients with advanced refractory gastrointestinal cancers. Angiogenesis 15:275–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  • Baek YY, Lee DK, Kim J, Kim JH, Park W, Kim T, Han S, Jeoung D, You JC, Lee H, Won MH, Ha KS, Kwon YG, Kim YM (2017) Arg-Leu-Tyr-Glu tetrapeptide inhibits tumor progression by suppressing angiogenesis and vascular permeability via VEGF receptor-2 antagonism. Oncotarget 8:11763–11777

    PubMed  Google Scholar 

  • Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15:102–111

    Article  CAS  PubMed  Google Scholar 

  • Bazzola L, Foroni C, Andreis D, Zanoni V, Cappelletti MR, Allevi G, Aguggini S, Strina C, Milani M, Venturini S, Ferrozzi F, Giardini R, Bertoni R, Turley H, Gatter K, Petronini PG, Fox SB, Harris AL, Martinotti M, Berruti A, Bottini A, Reynolds AR, Generali D (2015) Combination of letrozole, metronomic cyclophosphamide and sorafenib is well-tolerated and shows activity in patients with primary breast cancer. Br J Canc 112:52–60

    Article  CAS  Google Scholar 

  • Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N (1996) Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J 15:658–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bocci G, Nicolaou KC, Kerbel RS (2002) Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res 62:6938–6943

    CAS  PubMed  Google Scholar 

  • Bocci G, Francia G, Man S, Lawler J, Kerbel RS (2003) Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc Natl Acad Sci USA 100:12917–12922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O’Reilly MS, Folkman J (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60:1878–1886

    CAS  PubMed  Google Scholar 

  • Calleri A, Bono A, Bagnardi V, Quarna J, Mancuso P, Rabascio C, Dellapasqua S, Campagnoli E, Shaked Y, Goldhirsch A, Colleoni M, Bertolini F (2009) Predictive potential of angiogenic growth factors and circulating endothelial cells in breast cancer patients receiving metronomic chemotherapy plus bevacizumab. Clin Canc Res 15:7652–7657

    Article  CAS  Google Scholar 

  • Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10:417–427

    Article  CAS  PubMed  Google Scholar 

  • Catalano V, Turdo A, Di Franco S, Dieli F, Todaro M, Stassi G (2013) Tumor and its microenvironment: a synergistic interplay. Semin Cancer Biol 23:522–532

    Article  CAS  PubMed  Google Scholar 

  • Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864

    Article  CAS  PubMed  Google Scholar 

  • Cham KK, Baker JH, Takhar KS, Flexman JA, Wong MQ, Owen DA, Yung A, Kozlowski P, Reinsberg SA, Chu EM, Chang CW, Buczkowski AK, Chung SW, Scudamore CH, Minchinton AI, Yapp DT, Ng SS (2010) Metronomic gemcitabine suppresses tumour growth, improves perfusion, and reduces hypoxia in human pancreatic ductal adenocarcinoma. Br J Cancer 103:52–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan TS, Hsu CC, Pai VC, Liao WY, Huang SS, Tan KT, Yen CJ, Hsu SC, Chen WY, Shan YS, Li CR, Lee MT, Jiang KY, Chu JM, Lien GS, Weaver VM, Tsai KK (2016) Metronomic chemotherapy prevents therapy-induced stromal activation and induction of tumor-initiating cells. J Exp Med 213:2967–2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi CH, Ryu JY, Cho YJ, Jeon HK, Choi JJ, Ylaya K, Lee YY, Kim TJ, Chung JY, Hewitt SM, Kim BG, Bae DS, Lee JW (2017) The anti-cancer effects of itraconazole in epithelial ovarian cancer. Sci Rep 7:6552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements MK, Jones CB, Cumming M, Daoud SS (1999) Antiangiogenic potential of camptothecin and topotecan. Cancer Chemother Pharmacol 44:411–416

    Article  CAS  PubMed  Google Scholar 

  • Colleoni M, Orlando L, Sanna G, Rocca A, Maisonneuve P, Peruzzotti G, Ghisini R, Sandri MT, Zorzino L, Nole F, Viale G, Goldhirsch A (2006) Metronomic low-dose oral cyclophosphamide and methotrexate plus or minus thalidomide in metastatic breast cancer: antitumor activity and biological effects. Ann Oncol 17:232–238

    Article  CAS  PubMed  Google Scholar 

  • Czepluch FS, Waltenberger J (2008) Vascular endothelial growth factor protein levels and gene expression in peripheral monocytes after stenting: a randomized comparative study of sirolimus-eluting and bare-metal stents. Eur Heart J 29:1924–1925

    Article  CAS  PubMed  Google Scholar 

  • Di Desidero T, Derosa L, Galli L, Orlandi P, Fontana A, Fioravanti A, Marconcini R, Giorgi M, Campi B, Saba A, Lucchesi S, Felipetto R, Danesi R, Francia G, Allegrini G, Falcone A, Bocci G (2016) Clinical, pharmacodynamic and pharmacokinetic results of a prospective phase II study on oral metronomic vinorelbine and dexamethasone in castration-resistant prostate cancer patients. Invest New Drugs 34:760–770

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Shan L, Nai W, Lin X, Zhou L, Dong X, Wu H, Xiao M, Zhou X, Wang L, Li T, Fu Y, Lin Y, Jia C, Dai M, Bai X (2018) DEPTOR deficiency-mediated mTORc1 hyperactivation in vascular endothelial cells promotes angiogenesis. Cell Physiol Biochem 46:520–531

    Article  CAS  PubMed  Google Scholar 

  • Dudley AC (2012) Tumor endothelial cells. Cold Spring Harb Perspect Med 2:a006536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K, Oliner JD, McKeon F, Haber DA (2002) REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell 10:995–1005

    Article  CAS  PubMed  Google Scholar 

  • Emmenegger U, Man S, Shaked Y, Francia G, Wong JW, Hicklin DJ, Kerbel RS (2004) A comparative analysis of low-dose metronomic cyclophosphamide reveals absent or low-grade toxicity on tissues highly sensitive to the toxic effects of maximum tolerated dose regimens. Cancer Res 64:3994–4000

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286

    Article  CAS  PubMed  Google Scholar 

  • Frost P, Berlanger E, Mysore V, Hoang B, Shi Y, Gera J, Lichtenstein A (2013) Mammalian target of rapamycin inhibitors induce tumor cell apoptosis in vivo primarily by inhibiting VEGF expression and angiogenesis. J Oncol 2013:897025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs D, Rodriguez A, Eriksson S, Christofferson R, Sundberg C, Azarbayjani F (2010) Metronomic administration of the drug GMX1777, a cellular NAD synthesis inhibitor, results in neuroblastoma regression and vessel maturation without inducing drug resistance. Int J Cancer 126:2773–2789

    CAS  PubMed  Google Scholar 

  • Galluzzi L, Buqué A, Kepp O, Zitvogel L (2015) Kroemer G (2015) Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28:690–714

    Article  CAS  PubMed  Google Scholar 

  • Gasparini G (2001) Metronomic scheduling: the future of chemotherapy? Lancet Oncol 2:733–740

    Article  CAS  PubMed  Google Scholar 

  • Gnoni A, Silvestris N, Licchetta A, Santini D, Scartozzi M, Ria R, Pisconti S, Petrelli F, Vacca A, Lorusso V (2015) Metronomic chemotherapy from rationale to clinical studies: a dream or reality? Crit Rev Oncol Hematol 95:46–61

    Article  PubMed  Google Scholar 

  • Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, Farkas S, Anthuber M, Jauch KW, Geissler EK (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8:128–135

    Article  CAS  PubMed  Google Scholar 

  • Hamano Y, Sugimoto H, Soubasakos MA, Kieran M, Olsen BR, Lawler J, Sudhakar A, Kalluri R (2004) Thrombospondin-1 associated with tumor microenvironment contributes to low-dose cyclophosphamide-mediated endothelial cell apoptosis and tumor growth suppression. Cancer Res 64:1570–1574

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Bergers G, Bergsland E (2000) Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 105:1045–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hida K, Akiyama K, Ohga N, Maishi N, Hida Y (2013a) Tumour endothelial cells acquire drug resistance in a tumour microenvironment. J Biochem 153:243–249

    Article  CAS  PubMed  Google Scholar 

  • Hida K, Ohga N, Akiyama K, Maishi N, Hida Y (2013b) Heterogeneity of tumor endothelial cells. Cancer Sci 104:1391–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM, Park YB (2004) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24:288–293

    Article  CAS  PubMed  Google Scholar 

  • Iliopoulos D, Hirsch HA, Wang G, Struhl K (2011) Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci USA 108:1397–1402

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia L, Waxman DJ (2013) Thrombospondin-1 and pigment epithelium-derived factor enhance responsiveness of KM12 colon tumor to metronomic cyclophosphamide but have disparate effects on tumor metastasis. Canc Lett 330:241–249

    Article  CAS  Google Scholar 

  • Jones BS, Jerome MS, Miley D, Jackson BE, DeShazo MR, Reddy VV, Singh KP, Brown OC, Robert F (2017) Pilot phase II study of metronomic chemotherapy in combination with bevacizumab in patients with advanced non-squamous non-small cell lung cancer. Lung Cancer 106:125–130

    Article  PubMed  Google Scholar 

  • Jung K, Heishi T, Incio J, Huang Y, Beech EY, Pinter M, Ho WW, Kawaguchi K, Rahbari NN, Chung E, Kim JK, Clark JW, Willett CG, Yun SH, Luster AD, Padera TP, Jain RK, Fukumura D (2017) Targeting CXCR4-dependent immunosuppressive Ly6Clow monocytes improves antiangiogenic therapy in colorectal cancer. Proc Natl Acad Sci USA 114:10455–10460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerbel RS (2007) Improving conventional or low dose metronomic chemotherapy with targeted antiangiogenic drugs. Cancer Res Treat 39:150–159

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerbel RS, Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4:423–436

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Kim IK, Yang JM, Lee E, Koh BI, Song S, Park J, Lee S, Choi C, Kim JW, Kubota Y, Koh GY, Kim I (2016) SoxF transcription factors are positive feedback regulators of VEGF signaling. Circ Res 119:839–852

    Article  CAS  PubMed  Google Scholar 

  • Kim IK, Kim K, Lee E, Oh DS, Park CS, Park S, Yang JM, Kim JH, Kim HS, Shima DT, Kim JH, Hong SH, Cho YH, Kim YH, Park JB, Koh GY, Ju YS, Lee HK, Lee S, Kim I (2018) Sox7 promotes high-grade glioma by increasing VEGFR2-mediated vascular abnormality. J Exp Med 215:963–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, Bohlen P, Kerbel RS (2000) Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105:R15–R24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korkaya H, Liu S, Wicha MS (2011) Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest 121:3804–3809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Mokhtari RB, Sheikh R, Wu B, Zhang L, Xu P, Man S, Oliveira ID, Yeger H, Kerbel RS, Baruchel S (2011) Metronomic oral topotecan with pazopanib is an active antiangiogenic regimen in mouse models of aggressive pediatric solid tumor. Clin Canc Res 17:5656–5667

    Article  CAS  Google Scholar 

  • Langenkamp E, Molema G (2009) Microvascular endothelial cell heterogeneity: general concepts and pharmacological consequences for anti-angiogenic therapy of cancer. Cell Tissue Res 335:205–222

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Qian DZ, Rey S, Wei H, Liu JO, Semenza GL (2009) Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumor induced mobilization of circulating angiogenic cells. Proc Natl Acad Sci USA 106:2353–2358

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee DC, Sohn HA, Park ZY, Oh S, Kang YK, Lee KM, Kang M, Jang YJ, Yang SJ, Hong YK, Noh H, Kim JA, Kim DJ, Bae KH, Kim DM, Chung SJ, Yoo HS, Yu DY, Park KC, Yeom YI (2015) A lactate-induced response to hypoxia. Cell 161:595–609

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Weisdorf D, Solovey A, Hebbel RP (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105:71–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Kluger MS, D’Alessio A, Garcia-Cardena G, Pober JS (2008) Regulation of arterial-venous differences in tumor necrosis factor responsiveness of endothelial cells by anatomic context. Am J Pathol 172:1088–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luan X, Guan YY, Lovell JF, Zhao M, Lu Q, Liu YR, Liu HJ, Gao YG, Dong X, Yang SC, Zheng L, Sun P, Fang C, Chen HZ (2016) Tumor priming using metronomic chemotherapy with neovasculature-targeted, nanoparticulate paclitaxel. Biomaterials 95:60–73

    Article  CAS  PubMed  Google Scholar 

  • Mainetti LE, Rico MJ, Fernandez-Zenobi MV, Perroud HA, Roggero EA, Rozados VR, Scharovsky OG (2012) Therapeutic efficacy of metronomic chemotherapy with cyclophosphamide and doxorubicin on murine mammary adenocarcinomas. Ann Oncol 24:2310–2316

    Article  Google Scholar 

  • Maishi N, Ohba Y, Akiyama K, Ohga N, Hamada J, Nagao-Kitamoto H, Alam MT, Yamamoto K, Kawamoto T, Inoue N, Taketomi A, Shindoh M, Hida Y, Hida K (2016) Tumour endothelial cells in high metastatic tumours promote metastasis via epigenetic dysregulation of biglycan. Sci Rep 6:28039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiti R (2014) Metronomic chemotherapy. J Pharmacol Pharmacother 5:186–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda K, Ohga N, Hida Y, Muraki C, Tsuchiya K, Kurosu T, Akino T, Shih SC, Totsuka Y, Klagsbrun M, Shindoh M, Hida K (2010a) Adrenomedullin antagonist suppresses tumor formation in renal cell carcinoma through inhibitory effects on tumor endothelial cells and endothelial progenitor mobilization. Int J Oncol 394:947–954

    CAS  Google Scholar 

  • Matsuda K, Ohga N, Hida Y, Muraki C, Tsuchiya K, Kurosu T, Akino T, Shih SC, Totsuka Y, Klagsbrun M, Shindoh M, Hida K (2010b) Isolated tumor endothelial cells maintain specific character during long-term culture. Biochem Biophys Res Commun 394:947–954

    Article  CAS  PubMed  Google Scholar 

  • Matsuda K, Ohga N, Hida Y, Muraki C, Tsuchiya K, Kurosu T, Akino T, Shih SC, Totsuka Y, Klagsbrun M, Shindoh M, Hida K (2011) HuR keeps an angiogenic switch on by stabilising mRNA of VEGF and COX-2 in tumour endothelium. Br J Cancer 104:819–829

    Article  CAS  Google Scholar 

  • Merrick WC (2004) Cap-dependent and cap-independent translation in eukaryotic systems. Gene 332:1–11

    Article  CAS  PubMed  Google Scholar 

  • Mpekris F, Baish JW, Stylianopoulos T, Jain RK (2017) Role of vascular normalization in benefit from metronomic chemotherapy. Proc Natl Acad Sci USA 114:1994–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    Article  CAS  PubMed  Google Scholar 

  • Murakami J, Li TS, Ueda K, Tanaka T, Hamano K (2009) Inhibition of accelerated tumor growth by blocking the recruitment of mobilized endothelial progenitor cells after chemotherapy. Int J Cancer 12:1685–1692

    Article  CAS  Google Scholar 

  • Murakami H, Ogata Y, Akagi Y, Ishibashi N, Shirouzu K (2011) Circulating endothelial progenitor cells in metronomic chemotherapy using irinotecan and/or bevacizumab for colon carcinoma: study of their clinical significance. Exp Ther Med 2:595–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natale G, Bocci G (2018) Does metronomic chemotherapy induce tumor angiogenic dormancy? A review of available preclinical and clinical data. Cancer Lett 432:28–37

    Article  CAS  PubMed  Google Scholar 

  • Nissinen TA, Degerman J, Räsänen M, Poikonen AR, Koskinen S, Mervaala E, Pasternack A, Ritvos O, Kivelä R, Hulmi JJ (2016) Systemic blockade of ACVR2B ligands prevents chemotherapy-induced muscle wasting by restoring muscle protein synthesis without affecting oxidative capacity or atrogenes. Sci Rep 6:32695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panigrahy D, Kaipainen A, Butterfield CE, Chaponis DM, Laforme AM, Folkman J, Kieran MW (2010) Inhibition of tumor angiogenesis by oral etoposide. Exp Ther Med 1:739–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasquier E, Kavallaris M, Andre N (2010) Metronomic chemotherapy: new rationale for new directions. Nat Rev Clin Oncol 7:455–465

    Article  PubMed  Google Scholar 

  • Rao N, Lee YF, Ge R (2015) Novel endogenous angiogenesis inhibitors and their therapeutic potential. Acta Pharmacol Sin 36:1177–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Räsänen M, Degerman J, Nissinen TA, Miinalainen I, Kerkelä R, Siltanen A, Backman JT, Mervaala E, Hulmi JJ, Kivelä R, Alitalo K (2016) VEGF-B gene therapy inhibits doxorubicin-induced cardiotoxicity by endothelial protection. Proc Natl Acad Sci USA 113:13144–13149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha GZ, Dias MM, Ropelle ER, Osório-Costa F, Rossato FA, Vercesi AE, Saad MJ, Carvalheira JB (2011) Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin Cancer Res 17:3993–4005

    Article  CAS  PubMed  Google Scholar 

  • Roviello G, Bachelot T, Hudis CA, Curigliano G, Reynolds AR, Petrioli R, Generali D (2017) The role of bevacizumab in solid tumours: a literature based meta-analysis of randomised trials. Eur J Cancer 75:245–258

    Article  CAS  PubMed  Google Scholar 

  • Russell JS, Brown JM (2014) Circulating mouse Flk1 +/c-Kit +/CD45- cells function as endothelial progenitors cells (EPCs) and stimulate the growth of human tumor xenografts. Mol Cancer 13:177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson DH (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Hochedlinger K (2013) The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12:15–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt KM, Hellerbrand C, Ruemmele P, Michalski CW, Kong B, Kroemer A, Hackl C, Schlitt HJ, Geissler EK, Lang SA (2017) Inhibition of mTORC2 component RICTOR impairs tumor growth in pancreatic cancer models. Oncotarget 8:24491–24505

    PubMed  PubMed Central  Google Scholar 

  • Shi H, Jiang J, Ji J, Shi M, Cai Q, Chen X, Yu Y, Liu B, Zhu Z, Zhang J (2014) Anti-angiogenesis participates in antitumor effects of metronomic capecitabine on colon cancer. Canc Lett 349:128–135

    Article  CAS  Google Scholar 

  • Simkens LH, van Tinteren H, May A, ten Tije AJ, Creemers GJ, Loosveld OJ, de Jongh FE, Erdkamp FL, Erjavec Z, van der Torren AM, Tol J, Braun HJ, Nieboer P, van der Hoeven JJ, Haasjes JG, Jansen RL, Wals J, Cats A, Derleyn VA, Honkoop AH, Mol L, Punt CJ, Koopman M (2015) Maintenance treatment with capecitabine and bevacizumab in metastatic colorectal cancer (CAIRO3): a phase 3 randomised controlled trial of the Dutch Colorectal Cancer Group. Lancet 385:1843–1852

    Article  CAS  PubMed  Google Scholar 

  • St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202

    Article  CAS  PubMed  Google Scholar 

  • Stoelting S, Trefzer T, Kisro J, Steinke A, Wagner T, Peters SO (2008) Low-dose oral metronomic chemotherapy prevents mobilization of endothelial progenitor cells into the blood of cancer patients. Vivo 22:831–836

    CAS  Google Scholar 

  • Trevisani G, Bagnardi V, Sangalli C, Montagna E, Dellapasqua S, Sporchia A, Iorfida M, Viale G, Barberis M, Veronesi P, Luini A, Intra M, Goldhirsch A, Colleoni M (2015) Phase II study with epirubicin, cisplatin, and infusional fluorouracil followed by weekly paclitaxel with metronomic cyclophosphamide as a preoperative treatment of triple-negative breast cancer. Clin Breast Cancer 15:259–265

    Article  CAS  Google Scholar 

  • Trevisani F, Brandi G, Garuti F, Barbera MA, Tortora R, Casadei Gardini A, Granito A, Tovoli F, De Lorenzo S, Inghilesi AL, Foschi FG, Bernardi M, Marra F, Sacco R, Di Costanzo GG (2018) Metronomic capecitabine as second-line treatment for hepatocellular carcinoma after sorafenib discontinuation. J Cancer Res Clin Oncol 144:403–414

    Article  CAS  PubMed  Google Scholar 

  • Upreti M, Jyoti A, Sethi P (2013) Tumor microenvironment and nanotherapeutics. Transl Cancer Res 2:309–319

    CAS  PubMed  Google Scholar 

  • Vacca A, Iurlaro M, Ribatti D, Minischetti M, Nico B, Ria R, Pellegrino A, Dammacco F (1999) Antiangiogenesis is produced by nontoxic doses of vinblastine. Blood 94:4143–4155

    CAS  PubMed  Google Scholar 

  • Vadysirisack DD, Baenke F, Ory B, Lei K, Ellisen LW (2011) Feedback control of p53 translation by REDD1 and mTORC1 limits the p53-dependent DNA damage response. Mol Cell Biol 31:4356–4365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Lu J, You Q, Huang H, Chen Y, Liu K (2016) The mTOR/AP-1/VEGF signaling pathway regulates vascular endothelial cell growth. Oncotarget 7:53269–53276

    PubMed  PubMed Central  Google Scholar 

  • Wei J, Jiang H, Gao H, Wang G (2016) Blocking mammalian target of rapamycin (mTOR) attenuates HIF-1α pathways engaged-vascular endothelial growth factor (VEGF) in diabetic retinopathy. Cell Physiol Biochem 40:1570–1577

    Article  CAS  PubMed  Google Scholar 

  • Woo IS, Jung YH (2017) Metronomic chemotherapy in metastatic colorectal cancer. Cancer Lett 400:319–324

    Article  CAS  PubMed  Google Scholar 

  • Yu JX, Huang XF, Lv WM, Ye CS, Peng XZ, Zhang H, Xiao LB, Wang SM (2009) Combination of stromal-derived factor-1α and vascular endothelial growth factor gene-modified endothelial progenitor cells is more effective for ischemic neovascularization. J Vasc Surg 50:608–616

    Article  PubMed  Google Scholar 

  • Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK (1996) Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci USA 93:14765–14770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan F, Shi H, Ji J, Cai Q, Chen X, Yu Y, Liu B, Zhu Z, Zhang J (2015) Capecitabine metronomic chemotherapy inhibits the proliferation of gastric cancer cells through anti-angiogenesis. Oncol Rep 33:1753–1762

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28–39

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2017R1A2B3004565).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Myeong Kim.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Kim, YM. Tumor endothelial cells as a potential target of metronomic chemotherapy. Arch. Pharm. Res. 42, 1–13 (2019). https://doi.org/10.1007/s12272-018-01102-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-018-01102-z

Keywords

Navigation