Skip to main content
Log in

Cancer metabolomics in basic science perspective

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

As metabolomics investigates metabolic pathways with the focus on metabolites, it is a suitable approach to address the complex metabolic alteration in cancer. In addition, metabolic profiles are affected by environmental and post-natal changes, and therefore, directly measuring many metabolites may provide epigenetically relevant information in cancer. Despite much development in our understanding of cancer metabolism, focus is often directed to signaling or metabolic proteins that modulate the metabolite levels. In this review, we discuss the “metabolite-oriented view” on cancer metabolism. We cover how metabolomics research contributed to our current insights into the basic mechanism of metabolic alterations leading to cancer. Then, we discuss specific metabolites and related enzymatic pathways directly related with tumorigenesis. We particularly pay attention to how metabolites regulate signaling proteins and metabolic enzymes ultimately leading to cancer phenotypes. Finally, we address future prospects and challenges of metabolomics in cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

2HG:

2-Hydroxyglutarate

α-KG:

α-Ketoglutarate

FH:

Fumarate hydratase

G6P:

Glucose 6-phosphate

G6PDH:

Glucose-6-phosphate dehydrogenase

GLDC:

Glycine dehydrogenase

GLS:

Glutaminase

HIF-1α:

Hypoxia-inducible factor 1-alpha

HK:

Hexokinase

IDH:

Isocitrate dehydrogenase

IL-12:

Interleukin 12

KDMs:

Histone lysine demethylases

KEAP1:

Kelch-like ECH-associated protein 1

LDH:

Lactate dehydrogenase

ME:

Malate dehydrogenase

mIDH:

Isocitrate dehydrogenase mutant

MMP-2:

Matrix metallopeptidase 2

MTHFD:

Methylenetetrahydrofolate dehydrogenase

NF-κB/IL-8:

Nuclear transcription factor-κB/Interleukin-8

Nrf-2:

Nuclear factor-like 2

PDH:

Prolyl hydroxylase

PEP:

Phosphoenolpyruvate

PHGDH:

Phosphoglycerate dehydrogenase

PKM2:

Pyruvate kinase M2

PPP:

Pentose phosphate pathway

PSAT1:

Phosphoserine aminotransferase

SDH:

Succinate dehydrogenase

SHMT:

Serine hydroxymethyltransferase

TETs:

TET methylcytosine hydroxylases

TGF-β2:

Transforming growth factor-beta 2

VEGF:

Vascular endothelial growth factor

References

  • Adam, J., et al. 2011. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: Roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20(4): 524–537.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Altenberg, B., and K.O. Greulich. 2004. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 84(6): 1014–1020.

    Article  CAS  PubMed  Google Scholar 

  • Armitage, E.G., and C. Barbas. 2014. Metabolomics in cancer biomarker discovery: Current trends and future perspectives. Journal of Pharmaceutical and Biomedical Analysis 87: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Baumann, F., et al. 2009. Lactate promotes glioma migration by TGF-beta2-dependent regulation of matrix metalloproteinase-2. Neuro Oncology 11(4): 368–380.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beckert, S., et al. 2006. Lactate stimulates endothelial cell migration. Wound Repair and Regeneration 14(3): 321–324.

    Article  PubMed  Google Scholar 

  • Beger, R.D. 2013. A review of applications of metabolomics in cancer. Metabolites 3(3): 552–574.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boissel, N., et al. 2011. Differential prognosis impact of IDH2 mutations in cytogenetically normal acute myeloid leukemia. Blood 117(13): 3696–3697.

    Article  CAS  PubMed  Google Scholar 

  • Breitkopf, S.B., and J.M. Asara 2012. Determining in vivo phosphorylation sites using mass spectrometry. Current Protocols in Molecular Biology. Chapter 18: p. Unit18 19 1–27.

  • Buchakjian, M.R., and S. Kornbluth. 2010. The engine driving the ship: Metabolic steering of cell proliferation and death. Nature Reviews Molecular Cell Biology 11(10): 715–727.

    Article  CAS  PubMed  Google Scholar 

  • Cantor, J.R., and D.M. Sabatini. 2012. Cancer cell metabolism: One hallmark, many faces. Cancer Discovery 2(10): 881–898.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chaneton, B., et al. 2012. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491(7424): 458–462.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng, T., et al. 2011. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proceedings of the National Academy of Sciences USA 108(21): 8674–8679.

    Article  CAS  Google Scholar 

  • Chou, W.C., et al. 2011. The prognostic impact and stability of isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid leukemia. Leukemia 25(2): 246–253.

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury, R., et al. 2011. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Reports 12(5): 463–469.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Claudino, W.M., et al. 2012. Metabolomics in cancer: A bench-to-bedside intersection. Critical Reviews in Oncology Hematology 84(1): 1–7.

    Article  Google Scholar 

  • Dang, C.V. 2012. Links between metabolism and cancer. Genes & Development 26(9): 877–890.

    Article  CAS  Google Scholar 

  • Dang, L., et al. 2009. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274): 739–744.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dang, N.H., et al. 2014. Targeted cancer therapeutics: Biosynthetic and energetic pathways characterized by metabolomics and the interplay with key cancer regulatory factors. Current Pharmaceutical Design 20(15): 2637–2647.

    CAS  PubMed  Google Scholar 

  • DeBerardinis, R.J., and T. Cheng. 2010. Q’s next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29(3): 313–324.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DeBerardinis, R.J., et al. 2007. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences USA 104(49): 19345–19350.

    Article  CAS  Google Scholar 

  • Des Rosiers, C., et al. 1995. Isotopomer analysis of citric acid cycle and gluconeogenesis in rat liver. Reversibility of isocitrate dehydrogenase and involvement of ATP-citrate lyase in gluconeogenesis. Journal of Biological Chemistry 270(17): 10027–10036.

    Article  CAS  PubMed  Google Scholar 

  • Duarte, I.F., and A.M. Gil. 2012. Metabolic signatures of cancer unveiled by NMR spectroscopy of human biofluids. Progress in Nuclear Magnetic Resonance Spectroscopy 62: 51–74.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, W.B., N.J. Bailey, and H.E. Johnson. 2005. Measuring the metabolome: Current analytical technologies. Analyst 130(5): 606–625.

    Article  CAS  PubMed  Google Scholar 

  • Fan, J., et al. 2013. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Molecular systems biology 9: 712.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fan, J., et al. 2014. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510(7504): 298–302.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fischer, K., et al. 2007. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109(9): 3812–3819.

    Article  CAS  PubMed  Google Scholar 

  • Formby, B., and R. Stern. 2003. Lactate-sensitive response elements in genes involved in hyaluronan catabolism. Biochemical and Biophysical Research Communications 305(1): 203–208.

    Article  CAS  PubMed  Google Scholar 

  • Gao, P., et al. 2009. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458(7239): 762–765.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goetze, K., et al. 2011. Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. International Journal of Oncology 39(2): 453–463.

    CAS  PubMed  Google Scholar 

  • Gottfried, E., et al. 2006. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107(5): 2013–2021.

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb, E., and I.P. Tomlinson. 2005. Mitochondrial tumour suppressors: A genetic and biochemical update. Nature Reviews Cancer 5(11): 857–866.

    Article  CAS  PubMed  Google Scholar 

  • Grassian, A.R., et al. 2014. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism. Cancer Research 74(12): 3317–3331.

    Article  CAS  PubMed  Google Scholar 

  • Hayes, J.D., and M. McMahon. 2009. NRF2 and KEAP1 mutations: Permanent activation of an adaptive response in cancer. Trends in Biochemical Sciences 34(4): 176–188.

    Article  CAS  PubMed  Google Scholar 

  • Hensley, C.T., A.T. Wasti, and R.J. DeBerardinis. 2013. Glutamine and cancer: Cell biology, physiology, and clinical opportunities. The Journal of Clinical Investigation 123(9): 3678–3684.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirschhaeuser, F., U.G. Sattler, and W. Mueller-Klieser. 2011. Lactate: A metabolic key player in cancer. Cancer Research 71(22): 6921–6925.

    Article  CAS  PubMed  Google Scholar 

  • Holleran, A.L., et al. 1995. Glutamine metabolism in AS-30D hepatoma cells. Evidence for its conversion into lipids via reductive carboxylation. Molecular and Cellular Biochemistry 152(2): 95–101.

    Article  CAS  PubMed  Google Scholar 

  • Hsu, P.P., and D.M. Sabatini. 2008. Cancer cell metabolism: Warburg and beyond. Cell 134(5): 703–707.

    Article  CAS  PubMed  Google Scholar 

  • Hu, W., et al. 2010. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proceedings of the National Academy of Sciences USA 107(16): 7455–7460.

    Article  CAS  Google Scholar 

  • Inami, Y., et al. 2011. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. Journal of Cell Biology 193(2): 275–284.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jain, M., et al. 2012. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336(6084): 1040–1044.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jaramillo, M.C., and D.D. Zhang. 2013. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes & Development 27(20): 2179–2191.

    Article  CAS  Google Scholar 

  • Jentzmik, F., et al. 2011. Sarcosine in prostate cancer tissue is not a differential metabolite for prostate cancer aggressiveness and biochemical progression. Journal of Urology 185(2): 706–711.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy, K.M., et al. 2013. Catabolism of exogenous lactate reveals it as a legitimate metabolic substrate in breast cancer. PLoS One 8(9): e75154.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koivunen, P., et al. 2012. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483(7390): 485–488.

    Article  Google Scholar 

  • Kung, H.N., J.R. Marks, and J.T. Chi. 2011. Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genetics 7(8): e1002229.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larive, C.K., G.A. Barding, and M.M. Dinges. 2014. NMR spectroscopy for metabolomics and metabolic profiling. Analytical chemistry 87(1): 133–146.

    Article  PubMed  Google Scholar 

  • Lei, Z., D.V. Huhman, and L.W. Sumner. 2011. Mass spectrometry strategies in metabolomics. Journal of Biological Chemistry 286(29): 25435–25442.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liesenfeld, D.B., et al. 2013. Review of mass spectrometry-based metabolomics in cancer research. Cancer Epidemiology Biomarkers & Prevention 22(12): 2182–2201.

    Article  CAS  Google Scholar 

  • Locasale, J.W. 2013. Serine, glycine and one-carbon units: Cancer metabolism in full circle. Nature Reviews Cancer 13(8): 572–583.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu, H., R.A. Forbes, and A. Verma. 2002. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. Journal of Biological Chemistry 277(26): 23111–23115.

    Article  CAS  PubMed  Google Scholar 

  • Maher, E.A., et al. 2012. Metabolism of [U-13 C]glucose in human brain tumors in vivo. NMR in Biomedicine 25(11): 1234–1244.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Metallo, C.M., et al. 2012. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481(7381): 380–384.

    CAS  Google Scholar 

  • Milne, S.B., et al. 2013. Sum of the parts: Mass spectrometry-based metabolomics. Biochemistry 52(22): 3829–3840.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moreno-Sanchez, R., et al. 2007. Energy metabolism in tumor cells. FEBS Journal 274(6): 1393–1418.

    Article  CAS  PubMed  Google Scholar 

  • Mullen, A.R., et al. 2012. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481(7381): 385–388.

    CAS  Google Scholar 

  • Mullen, A.R., et al. 2014. Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Reports 7(5): 1679–1690.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicholson, J.K., and J.C. Lindon. 2008. Systems biology: Metabonomics. Nature 455(7216): 1054–1056.

    Article  CAS  PubMed  Google Scholar 

  • Nordstrom, A., and R. Lewensohn. 2010. Metabolomics: Moving to the clinic. Journal of Neuroimmune Pharmacology 5(1): 4–17.

    Article  PubMed  Google Scholar 

  • O’Connell, T.M. 2012. Recent advances in metabolomics in oncology. Bioanalysis 4(4): 431–451.

    Article  PubMed  Google Scholar 

  • Ooi, A., et al. 2011. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 20(4): 511–523.

    Article  CAS  PubMed  Google Scholar 

  • Pan, Z., and D. Raftery. 2007. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Analytical and Bioanalytical Chemistry 387(2): 525–527.

    Article  CAS  PubMed  Google Scholar 

  • Parsons, D.W., et al. 2008. An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897): 1807–1812.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patti, G.J., O. Yanes, and G. Siuzdak. 2012. Metabolomics: The apogee of the omics trilogy. Nature Reviews Molecular Cell Biology 13(4): 263–269.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pollard, P.J., et al. 2005. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Human Molecular Genetics 14(15): 2231–2239.

    Article  CAS  PubMed  Google Scholar 

  • Possemato, R., et al. 2011. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476(7360): 346–350.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sasaki, M., et al. 2012. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488(7413): 656–659.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schnittger, S., et al. 2010. IDH1 mutations are detected in 6.6 % of 1414 AML patients and are associated with intermediate risk karyotype and unfavorable prognosis in adults younger than 60 years and unmutated NPM1 status. Blood 116(25): 5486–5496.

    Article  CAS  PubMed  Google Scholar 

  • Schulze, A., and A.L. Harris. 2012. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491(7424): 364–373.

    Article  CAS  PubMed  Google Scholar 

  • Shen, L., et al. 2014. Mechanism and function of oxidative reversal of DNA and RNA methylation. Annual Review of Biochemistry 83: 585–614.

    Article  CAS  PubMed  Google Scholar 

  • Shim, E.H., et al. 2014. L-2-Hydroxyglutarate: An epigenetic modifier and putative oncometabolite in renal cancer. Cancer Discovery 4(11): 1290–1298.

    Article  CAS  PubMed  Google Scholar 

  • Smith, T.G., and N.P. Talbot. 2010. Prolyl hydroxylases and therapeutics. Antioxidants & Redox Signaling 12(4): 431–433.

    Article  CAS  Google Scholar 

  • Sonveaux, P., et al. 2008. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. The Journal of Clinical Investigation 118(12): 3930–3942.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Spratlin, J.L., N.J. Serkova, and S.G. Eckhardt. 2009. Clinical applications of metabolomics in oncology: A review. Clinical Cancer Research 15(2): 431–440.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sreekumar, A., et al. 2009. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457(7231): 910–914.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stern, R., et al. 2002. Lactate stimulates fibroblast expression of hyaluronan and CD44: The Warburg effect revisited. Experimental Cell Research 276(1): 24–31.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, S., et al. 2010. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proceedings of the National Academy of Sciences USA 107(16): 7461–7466.

    Article  CAS  Google Scholar 

  • Szeliga, M., et al. 2005. Lack of expression of the liver-type glutaminase (LGA) mRNA in human malignant gliomas. Neuroscience Letters 374(3): 171–173.

    Article  CAS  PubMed  Google Scholar 

  • van den Heuvel, A.P., et al. 2012. Analysis of glutamine dependency in non-small cell lung cancer: GLS1 splice variant GAC is essential for cancer cell growth. Cancer Biology & Therapy 13(12): 1185–1194.

    Article  Google Scholar 

  • Vander Heiden, M.G. 2011. Targeting cancer metabolism: A therapeutic window opens. Nature reviews Drug discovery 10(9): 671–684.

    Article  CAS  PubMed  Google Scholar 

  • Vander Heiden, M.G., L.C. Cantley, and C.B. Thompson. 2009. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324(5930): 1029–1033.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vegran, F., et al. 2011. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Research 71(7): 2550–2560.

    Article  CAS  PubMed  Google Scholar 

  • Warburg, O. 1956. On the origin of cancer cells. Science 123(3191): 309–314.

    Article  CAS  PubMed  Google Scholar 

  • Warburg, O., K. Posener, and E. Negelein. 1924. Ueber den Stoffwechsel der Tumoren. Biochemische Zeitschrift 152: 319–344.

    Google Scholar 

  • Ward, P.S., and C.B. Thompson. 2012a. Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell 21(3): 297–308.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ward, P.S., and C.B. Thompson. 2012b. Signaling in control of cell growth and metabolism. Cold Spring Harbor Perspectives in Biology 4(7): a006783.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ward, P.S., et al. 2010. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17(3): 225–234.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wei, R., G. Li, and A.B. Seymour. 2010. High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics. Analytical Chemistry 82(13): 5527–5533.

    Article  CAS  PubMed  Google Scholar 

  • Weinberg, F., et al. 2010. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proceedings of the National Academy of Sciences USA 107(19): 8788–8793.

    Article  CAS  Google Scholar 

  • Wen, H., et al. 2014. Metabolomic comparison between cells over-expressing isocitrate dehydrogenase 1 and 2 mutants and the effects of an inhibitor on the metabolism. Journal of Neurochemistry 132(2): 183–193.

  • Wise, D.R., et al. 2008. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proceedings of the National Academy of Sciences USA 105(48): 18782–18787.

    Article  CAS  Google Scholar 

  • Wise, D.R., et al. 2011. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proceedings of the National Academy of Sciences USA 108(49): 19611–19616.

    Article  CAS  Google Scholar 

  • Wishart, D.S. 2005. Metabolomics: The principles and potential applications to transplantation. American Journal of Transplantation 5(12): 2814–2820.

    Article  CAS  PubMed  Google Scholar 

  • Wishart, D.S., et al. 2013. HMDB 3.0–the human metabolome database in 2013. Nucleic acids research 41: D801–D807.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu, W., et al. 2011. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1): 17–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yan, H., et al. 2009. IDH1 and IDH2 mutations in gliomas. New England Journal of Medicine 360(8): 765–773.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang, H., et al. 2012. IDH1 and IDH2 mutations in tumorigenesis: Mechanistic insights and clinical perspectives. Clinical Cancer Research 18(20): 5562–5571.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang, M., T. Soga, and P.J. Pollard. 2013. Oncometabolites: Linking altered metabolism with cancer. The Journal of Clinical Investigation 123(9): 3652–3658.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang, W.C., et al. 2012. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148(1–2): 259–272.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, A.H., et al. 2013. NMR-based metabolomics coupled with pattern recognition methods in biomarker discovery and disease diagnosis. Magnetic Resonance in Chemistry 51(9): 549–556.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, S., et al. 2009. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324(5924): 261–265.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National R&D Program for Cancer Control (1420290) and from the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2012011362).

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghyouk Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, H., Oh, S., Jin, X. et al. Cancer metabolomics in basic science perspective. Arch. Pharm. Res. 38, 372–380 (2015). https://doi.org/10.1007/s12272-015-0552-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-015-0552-4

Keywords

Navigation