Skip to main content

Advertisement

Log in

circCELF1 Inhibits Myocardial Fibrosis by Regulating the Expression of DKK2 Through FTO/m6A and miR-636

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The aim of this study is to explore the role of circCELF1/miR-636/DKK2 pathway in myocardial fibrosis (MF). RT-qPCR and western blot were used to detect the expression of circCELF1, miR-636, and DKK2 in activated cardiac fibroblasts (CFs) and the hearts of acute myocardial infarction (AMI) mice. The m6A level of DKK2 was detected by RIP and RT-qPCR. The regulation of circCELF1/miR-636/DKK2 pathway on CF viability, activation, apoptosis, and migration was verified by CCK-8, western blot, flow cytometry, and Transwell. Ang II induced downregulation of circCELF1 expression, while circCELF1 enhanced the expression of DKK2 by adsorbing miR-636. circCELF1 also reduced DKK2 m6A level by upregulating FTO expression, thereby inhibiting the binding of miR-636 to DKK2 and promoting DKK2 expression. Ang II promoted CF viability, activation, and migration through the circCELF1/miR-636/DKK2 pathway. Both miR-636 inhibitors and DKK2 effectively reduced MF and improved cardiac function in AMI mice.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3′ UTR:

3′ Untranslated region

α-SMA:

α-Smooth muscle actin

AGO2:

Argonaute2

AMI:

Acute myocardial infarction

Ang II:

Angiotensin II

CFs:

Cardiac fibroblasts

circRNAs:

Circular RNAs

DKK2:

Dickkopf WNT signaling pathway inhibitor 2

FTO:

Fat mass and obesity-associated protein

HE:

Hematoxylin and Eosin

m6A:

N6-methyladenosine

METTL3:

Methyltransferase-like 3

MF:

Myocardial fibrosis

MI:

Myocardial infarction

NF-κB:

Nuclear factor kappa-B

VR:

Ventricular remodeling

RIP:

RNA immunoprecipitation

RIPA:

Radio immunoprecipitation assay buffer

RT-qPCR:

Real-time quantitative PCR

TGF-β:

Transforming growth factor-β

References

  1. Mannucci, P. M., Lotta, L. A., & Peyvandi, F. (2010). Genome-wide association studies in myocardial infarction and coronary artery disease. Journal of Tehran University Heart Center, 5, 116–121.

    PubMed  PubMed Central  Google Scholar 

  2. Gronda, E., Sacchi, S., Benincasa, G., et al. (2019). Unresolved issues in left ventricular postischemic remodeling and progression to heart failure. Journal of Cardiovascular Medicine (Hagerstown, Md.), 20, 640–649. https://doi.org/10.2459/JCM.0000000000000834

    Article  CAS  Google Scholar 

  3. Frangogiannis NG (2020) Cardiac fibrosis. Cardiovasc Res:cvaa324. https://doi.org/10.1093/cvr/cvaa324

  4. Bayoumi, A. S., Aonuma, T., Teoh, J. P., et al. (2018). Circular noncoding RNAs as potential therapies and circulating biomarkers for cardiovascular diseases. Acta Pharmacologica Sinica, 39, 1100–1109. https://doi.org/10.1038/aps.2017.196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gu, X., Jiang, Y. N., Wang, W. J., et al. (2020). Comprehensive circRNA expression profile and construction of circRNA-related ceRNA network in cardiac fibrosis. Biomedicine & Pharmacotherapy, 125, 109944. https://doi.org/10.1016/j.biopha.2020.109944

    Article  CAS  Google Scholar 

  6. Yin, L., Tang, Y., & Jiang, M. (2020). Research on the circular RNA bioinformatics in patients with acute myocardial infarction. Journal of Clinical Laboratory Analysis, 35, e23621. https://doi.org/10.1002/jcla.23621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lin, F., Yang, Y., Guo, Q., et al. (2020). Analysis of the molecular mechanism of acute coronary syndrome based on circRNA-miRNA network regulation. Evid Based Complement Alternat Med, 2020, 1584052. https://doi.org/10.1155/2020/1584052

    Article  PubMed  PubMed Central  Google Scholar 

  8. Miyamoto, S. D., Karimpour-Fard, A., Peterson, V., et al. (2015). Circulating microRNA as a biomarker for recovery in pediatric dilated cardiomyopathy. Journal of Heart and Lung Transplantation, 34, 724–733. https://doi.org/10.1016/j.healun.2015.01.979

    Article  Google Scholar 

  9. Bardin, P., Foussignière, T., Rousselet, N., et al. (2019). miR-636: A newly-identified actor for the regulation of pulmonary inflammation in cystic fibrosis. Frontiers in Immunology, 10, 2643. https://doi.org/10.3389/fimmu.2019.02643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun, L. Y., Bie, Z. D., Zhang, C. H., et al. (2016). MiR-154 directly suppresses DKK2 to activate Wnt signaling pathway and enhance activation of cardiac fibroblasts. Cell Biology International, 40, 1271–1279. https://doi.org/10.1002/cbin.10655

    Article  CAS  PubMed  Google Scholar 

  11. Liu, X. M., & Zhou, J. (2021). Multifaceted regulation of translation by the epitranscriptomic modification N6-methyladenosine. Critical Reviews in Biochemistry and Molecular Biology, 56, 137–148. https://doi.org/10.1080/10409238.2020.1869174

    Article  CAS  PubMed  Google Scholar 

  12. Qin, Y., Li, L., Luo, E., et al. (2020). Role of m6A RNA methylation in cardiovascular disease (Review). International Journal of Molecular Medicine, 46, 1958–1972. https://doi.org/10.3892/ijmm.2020.4746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mathiyalagan, P., Adamiak, M., Mayourian, J., et al. (2019). FTO-dependent N6-methyladenosine regulates cardiac function during remodeling and repair. Circulation, 139, 518–532. https://doi.org/10.1111/jcmm.13185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, X., Xu, Y., Qian, Z., et al. (2018). circRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma. Cell Death & Disease, 9, 1091. https://doi.org/10.1038/s41419-018-1132-6

    Article  CAS  Google Scholar 

  15. Li, X., Xue, X., Sun, Y., et al. (2019). MicroRNA-326-5p enhances therapeutic potential of endothelial progenitor cells for myocardial infarction. Stem Cell Research & Therapy, 10, 323. https://doi.org/10.1186/s13287-019-1413-8

    Article  CAS  Google Scholar 

  16. Zeng, Y., Du, W. W., Wu, Y., et al. (2017). A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics, 7, 3842–3855. https://doi.org/10.1161/CIRCULATIONAHA.118.036146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou, B., & Yu, J. W. (2017). A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1. Biochemical and Biophysical Research Communications, 487, 769–775. https://doi.org/10.7150/thno.19764

    Article  CAS  PubMed  Google Scholar 

  18. Zhu, Y., Pan, W., Yang, T., et al. (2019). Upregulation of circular RNA CircNFIB attenuates cardiac fibrosis by sponging miR-433. Frontiers in Genetics, 10, 564. https://doi.org/10.1161/CIRCULATIONAHA.118.033794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Salem, A. M., Ragheb, A. S., Hegazy, M. G. A., et al. (2019). Caffeic acid modulates miR-636 expression in diabetic nephropathy Rats. Indian Journal of Clinical Biochemistry, 34, 296–303. https://doi.org/10.1016/j.bbrc.2017.04.044

    Article  CAS  PubMed  Google Scholar 

  20. Ji, J., Xu, Q., He, X., et al. (2020). MicroRNA microarray analysis to detect biomarkers of aortic dissection from paraffin-embedded tissue samples. Interactive Cardiovascular and Thoracic Surgery, 31, 239–247. https://doi.org/10.3389/fgene.2019.00564

    Article  CAS  PubMed  Google Scholar 

  21. Morishita, A., Yoneyama, H., Iwama, H., et al. (2018). Circulating microRNA-636 is associated with the elimination of hepatitis C virus by ombitasvir/paritaprevir/ritonavir. Oncotarget, 9, 32054–32062. https://doi.org/10.1007/s12291-018-0743-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yanagida, A., Iwaisako, K., Hatano, E., et al. (2011). Downregulation of the Wnt antagonist Dkk2 links the loss of Sept4 and myofibroblastic transformation of hepatic stellate cells. Biochimica et Biophysica Acta, 1812, 1403–1411. https://doi.org/10.1093/icvts/ivaa093

    Article  CAS  PubMed  Google Scholar 

  23. Hong, F., Hong, J., Wang, L., et al. (2015). Chronic exposure to nanoparticulate TiO2 causes renal fibrosis involving activation of the Wnt pathway in mouse kidney. Journal of Agricultural and Food Chemistry, 63, 1639–47. https://doi.org/10.18632/oncotarget.25889

    Article  CAS  PubMed  Google Scholar 

  24. Dorn, L. E., Lasman, L., Chen, J., et al. (2019). The N6-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation, 139, 533–545. https://doi.org/10.1016/j.bbadis.2011.06.015

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Shandong Provincial Medical and Health Science and Technology Development Plan Project (2019WS119) and Ningxia Medical University Scientific Research Project (XY2017113).

Author information

Authors and Affiliations

Authors

Contributions

ZDB was responsible for conceiving the study. XXL was responsible for the experimental studies and manuscript preparation. BM and XL were responsible for the data acquisition and analysis.

Corresponding author

Correspondence to Zi-dong Bie.

Ethics declarations

Ethics Approval

This study was approved by the Ethics Committee of Animal Research Institute of Xianyang Hospital of Yan'an University, and the experiment was performed in accordance with the guidelines of the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Consent to Participate

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Joost Sluijter oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xx., Mu, B., Li, X. et al. circCELF1 Inhibits Myocardial Fibrosis by Regulating the Expression of DKK2 Through FTO/m6A and miR-636. J. of Cardiovasc. Trans. Res. 15, 998–1009 (2022). https://doi.org/10.1007/s12265-022-10209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10209-0

Keywords

Navigation