Skip to main content
Log in

BNP and Heart Failure: Preclinical and Clinical Trial Data

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The B-type natriuretic peptide (BNP), a member of the family of vasoactive peptides, has emerged as an important diagnostic, prognostic, and therapeutic tool in patients with heart failure (HF). The rapid incorporation into clinical practice of bioassays to BNP concentrations and pharmacological agents that augment the biological actions of this peptide such as nesiritide or vasopeptidase inhibitors has shown the potential for translational research to improve patient care. Despite the indirect evidence in support of a potential benefit from raising BNP, accumulating evidence suggests that simply increasing the amount of circulating BNP does not necessarily confer cardiovascular benefits in patient with HF. Moreover, in experimental HF, the response to treatments targeting specific natriuretic peptide receptors (NPRs) signaling seems to be attenuated. A better understanding of the NPRs signaling in HF would be clinically relevant and thus required, in order to devise strategies to develop novel agents and technologies that directly target this signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ANP:

Atrial natriuretic peptide

AP:

Action potential

ASCEND-HF:

Acute study of clinical effectiveness of nesiritide and decompensated heart failure

BNP:

B-type natriuretic peptide

cGMP:

Cyclic guanosine monophosphate

CNP:

C-type natriuretic peptide

FUSION:

Follow-up Serial Infusions of Nesiritide

GC:

Guanylate cyclase

HF:

Heart failure

HR:

Heart rate

LVEF:

Left ventricular ejection fraction

NE:

Norepinephrine

NO:

Nitric oxide

NPs:

Natriuretic peptides

NPRs:

Natriuretic peptide receptors

SAN:

Sino-atrial node

References

  1. De Wardener, H. E., Mills, I. H., Clapham, W. F., & Hayter, C. J. (1961). Studies on the efferent mechanism of the sodium diuresis which follows the administration of intravenous saline in the dog. Clinical Science, 21, 249–258.

    Google Scholar 

  2. Iwanaga, Y., Nishi, I., Furuichi, S., Noguchi, T., Sase, K., Kihara, Y., Goto, Y., & Nonogi, H. (2006). B-type natriuretic peptide strongly reflects diastolic wall stress in patients with chronic heart failure: comparison between systolic and diastolic heart failure. Journal of the American College of Cardiology, 47, 742–748.

    Article  CAS  PubMed  Google Scholar 

  3. de Lemos, J. A., McGuire, D. K., & Drazner, M. H. (2003). B-type natriuretic peptide in cardiovascular disease. Lancet, 362, 316–322.

    Article  PubMed  Google Scholar 

  4. Chun, T. H., Itoh, H., Ogawa, Y., Tamura, N., Takaya, K., Igaki, T., Yamashita, J., Doi, K., Inoue, M., Masatsugu, K., Korenaga, R., Ando, J., & Nakao, K. (1997). Shear stress augments expression of C-type natriuretic peptide and adrenomedullin. Hypertension, 29, 1296–1302.

    Article  CAS  PubMed  Google Scholar 

  5. Suga, S., Itoh, H., Komatsu, Y., Ogawa, Y., Hama, N., Yoshimasa, T., & Nakao, K. (1993). Cytokine-induced C-type natriuretic peptide (CNP) secretion from vascular endothelial cells—evidence for CNP as a novel autocrine/paracrine regulator from endothelial cells. Endocrinology, 133, 3038–3041.

    CAS  PubMed  Google Scholar 

  6. Suga, S., Nakao, K., Itoh, H., Komatsu, Y., Ogawa, Y., Hama, N., & Imura, H. (1992). Endothelial production of C-type natriuretic peptide and its marked augmentation by transforming growth factor-beta. Possible existence of “Vascular natriuretic peptide system”. Journal of Clinical Investigation, 90, 1145–1149.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Sonnenberg, J. L., Sakane, Y., Jeng, A. Y., Koehn, J. A., Ansell, J. A., Wennogle, L. P., & Ghai, R. D. (1988). Identification of protease 3.4.24.11 as the major atrial natriuretic factor degrading enzyme in the rat kidney. Peptides, 9, 173–180.

    Article  CAS  PubMed  Google Scholar 

  8. Charles, C. J., Prickett, T. C., Espiner, E. A., Rademaker, M. T., Richards, A. M., & Yandle, T. G. (2006). Regional sampling and the effects of experimental heart failure in sheep: differential responses in A, B and C-type natriuretic peptides. Peptides, 27, 62–68.

    Article  CAS  PubMed  Google Scholar 

  9. Kalra, P. R., Clague, J. R., Bolger, A. P., Anker, S. D., Poole-Wilson, P. A., Struthers, A. D., & Coats, A. J. (2003). Myocardial production of C-type natriuretic peptide in chronic heart failure. Circulation, 107, 571–573.

    Article  CAS  PubMed  Google Scholar 

  10. Del Ry, S., Passino, C., Maltinti, M., Emdin, M., & Giannessi, D. (2005). C-type natriuretic peptide plasma levels increase in patients with chronic heart failure as a function of clinical severity. European Journal of Heart Failure, 7, 1145–1148.

    Article  PubMed  Google Scholar 

  11. Maisel, A. (2002). B-type natriuretic peptide levels: diagnostic and prognostic in congestive heart failure: what’s next? Circulation, 105, 2328–2331.

    Article  PubMed  Google Scholar 

  12. Dao, Q., Krishnaswamy, P., Kazanegra, R., Harrison, A., Amirnovin, R., Lenert, L., Clopton, P., Alberto, J., Hlavin, P., & Maisel, A. S. (2001). Utility of B-type natriuretic peptide in the diagnosis of congestive heart failure in an urgent-care setting. Journal of the American College of Cardiology, 37, 379–385.

    Article  CAS  PubMed  Google Scholar 

  13. Rodeheffer, R. J. (2004). Measuring plasma B-type natriuretic peptide in heart failure: good to go in 2004? Journal of the American College of Cardiology, 44, 740–749.

    CAS  PubMed  Google Scholar 

  14. Cleland, J. G., Taylor, J., Freemantle, N., Goode, K. M., Rigby, A. S., & Tendera, M. (2012). Relationship between plasma concentrations of N-terminal pro brain natriuretic peptide and the characteristics and outcome of patients with a clinical diagnosis of diastolic heart failure: a report from the PEP-CHF study. European Journal of Heart Failure, 14, 487–494.

    Article  CAS  PubMed  Google Scholar 

  15. Doust, J. A., Pietrzak, E., Dobson, A., & Glasziou, P. (2005). How well does B-type natriuretic peptide predict death and cardiac events in patients with heart failure: systematic review. BMJ, 330, 625.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Nielsen, O. W., McDonagh, T. A., Robb, S. D., & Dargie, H. J. (2003). Retrospective analysis of the cost-effectiveness of using plasma brain natriuretic peptide in screening for left ventricular systolic dysfunction in the general population. Journal of the American College of Cardiology, 41, 113–120.

    Article  PubMed  Google Scholar 

  17. Troughton, R. W., Frampton, C. M., Yandle, T. G., Espiner, E. A., Nicholls, M. G., & Richards, A. M. (2000). Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet, 355, 1126–1130.

    Article  CAS  PubMed  Google Scholar 

  18. Hammerer-Lercher, A., Neubauer, E., Muller, S., Pachinger, O., Puschendorf, B., & Mair, J. (2001). Head-to-head comparison of N-terminal pro-brain natriuretic peptide, brain natriuretic peptide and N-terminal pro-atrial natriuretic peptide in diagnosing left ventricular dysfunction. Clinica Chimica Acta, 310, 193–197.

    Article  CAS  Google Scholar 

  19. Zois, N. E., Bartels, E. D., Hunter, I., Kousholt, B. S., Olsen, L. H., & Goetze, J. P. (2014). Natriuretic peptides in cardiometabolic regulation and disease. Nature Reviews Cardiology, 11, 403–412.

    Article  CAS  PubMed  Google Scholar 

  20. Suga, S., Nakao, K., Hosoda, K., Mukoyama, M., Ogawa, Y., Shirakami, G., Arai, H., Saito, Y., Kambayashi, Y., Inouye, K., et al. (1992). Receptor selectivity of natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide. Endocrinology, 130, 229–239.

    CAS  PubMed  Google Scholar 

  21. Maack, T., Suzuki, M., Almeida, F. A., Nussenzveig, D., Scarborough, R. M., McEnroe, G. A., & Lewicki, J. A. (1987). Physiological role of silent receptors of atrial natriuretic factor. Science, 238, 675–678.

    Article  CAS  PubMed  Google Scholar 

  22. Pagano, M., & Anand-Srivastava, M. B. (2001). Cytoplasmic domain of natriuretic peptide receptor C constitutes Gi activator sequences that inhibit adenylyl cyclase activity. Journal of Biological Chemistry, 276, 22064–22070.

    Article  CAS  PubMed  Google Scholar 

  23. Potter, L. R., Abbey-Hosch, S., & Dickey, D. M. (2006). Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocrine Reviews, 27, 47–72.

    Article  CAS  PubMed  Google Scholar 

  24. Springer, J., Azer, J., Hua, R., Robbins, C., Adamczyk, A., McBoyle, S., Bissell, M. B., & Rose, R. A. (2012). The natriuretic peptides BNP and CNP increase heart rate and electrical conduction by stimulating ionic currents in the sinoatrial node and atrial myocardium following activation of guanylyl cyclase-linked natriuretic peptide receptors. Journal of Molecular and Cellular Cardiology, 52, 1122–1134.

    Article  CAS  PubMed  Google Scholar 

  25. Azer, J., Hua, R., Vella, K., & Rose, R. A. (2012). Natriuretic peptides regulate heart rate and sinoatrial node function by activating multiple natriuretic peptide receptors. Journal of Molecular and Cellular Cardiology, 53, 715–724.

    Article  CAS  PubMed  Google Scholar 

  26. Bennett, B. D., Bennett, G. L., Vitangcol, R. V., Jewett, J. R., Burnier, J., Henzel, W., & Lowe, D. G. (1991). Extracellular domain-IgG fusion proteins for three human natriuretic peptide receptors. Hormone pharmacology and application to solid phase screening of synthetic peptide antisera. Journal of Biological Chemistry, 266, 23060–23067.

    CAS  PubMed  Google Scholar 

  27. Kinnunen, P., Vuolteenaho, O., & Ruskoaho, H. (1993). Mechanisms of atrial and brain natriuretic peptide release from rat ventricular myocardium: effect of stretching. Endocrinology, 132, 1961–1970.

    CAS  PubMed  Google Scholar 

  28. Selektor, Y., & Weber, K. T. (2008). The salt-avid state of congestive heart failure revisited. American Journal of the Medical Sciences, 335, 209–218.

    Article  PubMed  Google Scholar 

  29. Kistorp, C., Raymond, I., Pedersen, F., Gustafsson, F., Faber, J., & Hildebrandt, P. (2005). N-terminal pro-brain natriuretic peptide, C-reactive protein, and urinary albumin levels as predictors of mortality and cardiovascular events in older adults. JAMA, 293, 1609–1616.

    Article  CAS  PubMed  Google Scholar 

  30. Boerrigter, G., Costello-Boerrigter, L. C., Harty, G. J., Lapp, H., & Burnett, J. C., Jr. (2007). Des-serine-proline brain natriuretic peptide 3–32 in cardiorenal regulation. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 292, R897–R901.

    Article  CAS  PubMed  Google Scholar 

  31. Niederkofler, E. E., Kiernan, U. A., O’Rear, J., Menon, S., Saghir, S., Protter, A. A., Nelson, R. W., & Schellenberger, U. (2008). Detection of endogenous B-type natriuretic peptide at very low concentrations in patients with heart failure. Circulation. Heart Failure, 1, 258–264.

    Article  CAS  PubMed  Google Scholar 

  32. Sarraf, M., Masoumi, A., & Schrier, R. W. (2009). Cardiorenal syndrome in acute decompensated heart failure. Clinical Journal of the American Society of Nephrology: CJASN, 4, 2013–2026.

    Article  CAS  PubMed  Google Scholar 

  33. Chen, H. H., Schirger, J. A., Chau, W. L., Jougasaki, M., Lisy, O., Redfield, M. M., Barclay, P. T., & Burnett, J. C., Jr. (1999). Renal response to acute neutral endopeptidase inhibition in mild and severe experimental heart failure. Circulation, 100, 2443–2448.

    Article  CAS  PubMed  Google Scholar 

  34. Margulies, K. B., Heublein, D. M., Perrella, M. A., & Burnett, J. C., Jr. (1991). ANF-mediated renal cGMP generation in congestive heart failure. American Journal of Physiology, 260, F562–F568.

    CAS  PubMed  Google Scholar 

  35. Meyer, M., Zhang, Q., Khurana, K., Scholz, P. M., & Weiss, H. R. (2007). Negative functional effects of natriuretic peptides are attenuated in hypertrophic cardiac myocytes by reduced particulate guanylyl cyclase activity. Journal of Cardiovascular Pharmacology, 49, 100–105.

    Article  CAS  PubMed  Google Scholar 

  36. O’Connor, C. M., Starling, R. C., Hernandez, A. F., Armstrong, P. W., Dickstein, K., Hasselblad, V., Heizer, G. M., Komajda, M., Massie, B. M., McMurray, J. J., Nieminen, M. S., Reist, C. J., Rouleau, J. L., Swedberg, K., Adams, K. F., Jr., Anker, S. D., Atar, D., Battler, A., Botero, R., Bohidar, N. R., Butler, J., Clausell, N., Corbalan, R., Costanzo, M. R., Dahlstrom, U., Deckelbaum, L. I., Diaz, R., Dunlap, M. E., Ezekowitz, J. A., Feldman, D., Felker, G. M., Fonarow, G. C., Gennevois, D., Gottlieb, S. S., Hill, J. A., Hollander, J. E., Howlett, J. G., Hudson, M. P., Kociol, R. D., Krum, H., Laucevicius, A., Levy, W. C., Mendez, G. F., Metra, M., Mittal, S., Oh, B. H., Pereira, N. L., Ponikowski, P., Tang, W. H., Tanomsup, S., Teerlink, J. R., Triposkiadis, F., Troughton, R. W., Voors, A. A., Whellan, D. J., Zannad, F., & Califf, R. M. (2011). Effect of nesiritide in patients with acute decompensated heart failure. New England Journal of Medicine, 365, 32–43.

    Article  PubMed  Google Scholar 

  37. Dickey, D. M., Flora, D. R., Bryan, P. M., Xu, X., Chen, Y., & Potter, L. R. (2007). Differential regulation of membrane guanylyl cyclases in congestive heart failure: natriuretic peptide receptor (NPR)-B, Not NPR-A, is the predominant natriuretic peptide receptor in the failing heart. Endocrinology, 148, 3518–3522.

    Article  CAS  PubMed  Google Scholar 

  38. Matsumoto, T., Wada, A., Tsutamoto, T., Omura, T., Yokohama, H., Ohnishi, M., Nakae, I., Takahashi, M., & Kinoshita, M. (1999). Vasorelaxing effects of atrial and brain natriuretic peptides on coronary circulation in heart failure. American Journal of Physiology, 276, H1935–H1942.

    CAS  PubMed  Google Scholar 

  39. Tsutamoto, T., Kanamori, T., Morigami, N., Sugimoto, Y., Yamaoka, O., & Kinoshita, M. (1993). Possibility of downregulation of atrial natriuretic peptide receptor coupled to guanylate cyclase in peripheral vascular beds of patients with chronic severe heart failure. Circulation, 87, 70–75.

    Article  CAS  PubMed  Google Scholar 

  40. Singh, G., Kuc, R. E., Maguire, J. J., Fidock, M., & Davenport, A. P. (2006). Novel snake venom ligand dendroaspis natriuretic peptide is selective for natriuretic peptide receptor-A in human heart: downregulation of natriuretic peptide receptor-a in heart failure. Circulation Research, 99, 183–190.

    Article  CAS  PubMed  Google Scholar 

  41. Potter, L. R. (2011). Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases. Pharmacology and Therapeutics, 130, 71–82.

    Article  CAS  PubMed  Google Scholar 

  42. Haneda, M., Kikkawa, R., Maeda, S., Togawa, M., Koya, D., Horide, N., Kajiwara, N., & Shigeta, Y. (1991). Dual mechanism of angiotensin II inhibits ANP-induced mesangial cgmp accumulation. Kidney International, 40, 188–194.

    Article  CAS  PubMed  Google Scholar 

  43. Jaiswal, R. K. (1992). Endothelin inhibits the atrial natriuretic factor stimulated cGMP production by activating the protein kinase C in rat aortic smooth muscle cells. Biochemical and Biophysical Research Communications, 182, 395–402.

    Article  CAS  PubMed  Google Scholar 

  44. Kaye, D. M., Lambert, G. W., Lefkovits, J., Morris, M., Jennings, G., & Esler, M. D. (1994). Neurochemical evidence of cardiac sympathetic activation and increased central nervous system norepinephrine turnover in severe congestive heart failure. Journal of the American College of Cardiology, 23, 570–578.

    Article  CAS  PubMed  Google Scholar 

  45. Aggarwal, A., Esler, M. D., Socratous, F., & Kaye, D. M. (2001). Evidence for functional presynaptic alpha-2 adrenoceptors and their down-regulation in human heart failure. Journal of the American College of Cardiology, 37, 1246–1251.

    Article  CAS  PubMed  Google Scholar 

  46. Bohm, M., & Maack, C. (2000). Treatment of heart failure with beta-blockers. Mechanisms and results. Basic Research in Cardiology, 95(Suppl 1), I15–I24.

    PubMed  Google Scholar 

  47. The solved investigators (1991). Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The New England Journal of Medicine, 325, 293–302.

  48. Clark, A. L., & Cleland, J. G. (2000). The control of adrenergic function in heart failure: therapeutic intervention. Heart Failure Reviews, 5, 101–114.

    Article  CAS  PubMed  Google Scholar 

  49. Kuhn, M., Voss, M., Mitko, D., Stypmann, J., Schmid, C., Kawaguchi, N., Grabellus, F., & Baba, H. A. (2004). Left ventricular assist device support reverses altered cardiac expression and function of natriuretic peptides and receptors in end-stage heart failure. Cardiovascular Research, 64, 308–314.

    Article  CAS  PubMed  Google Scholar 

  50. Chen, H. H., Grantham, J. A., Schirger, J. A., Jougasaki, M., Redfield, M. M., & Burnett, J. C., Jr. (2000). Subcutaneous administration of brain natriuretic peptide in experimental heart failure. Journal of the American College of Cardiology, 36, 1706–1712.

    Article  CAS  PubMed  Google Scholar 

  51. Tamura, N., Ogawa, Y., Chusho, H., Nakamura, K., Nakao, K., Suda, M., Kasahara, M., Hashimoto, R., Katsuura, G., Mukoyama, M., Itoh, H., Saito, Y., Tanaka, I., Otani, H., & Katsuki, M. (2000). Cardiac fibrosis in mice lacking brain natriuretic peptide. Proceedings of the National Academy of Sciences of the United States of America, 97, 4239–4244.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Tonne, J. M., Holditch, S. J., Oehler, E. A., Schreiber, C. A., Ikeda, Y., & Cataliotti, A. (2014). Cardiac BNP gene delivery prolongs survival in aged spontaneously hypertensive rats with overt hypertensive heart disease. Aging (Albany NY), 6, 311–319.

    CAS  Google Scholar 

  53. Moilanen, A. M., Rysa, J., Mustonen, E., Serpi, R., Aro, J., Tokola, H., Leskinen, H., Manninen, A., Levijoki, J., Vuolteenaho, O., & Ruskoaho, H. (2011). Intramyocardial BNP gene delivery improves cardiac function through distinct context-dependent mechanisms. Circulation. Heart Failure, 4, 483–495.

    Article  CAS  PubMed  Google Scholar 

  54. Sackner-Bernstein, J. D., Kowalski, M., Fox, M., & Aaronson, K. (2005). Short-term risk of death after treatment with nesiritide for decompensated heart failure: a pooled analysis of randomized controlled trials. JAMA, 293, 1900–1905.

    Article  CAS  PubMed  Google Scholar 

  55. Arora, R. R., Venkatesh, P. K., & Molnar, J. (2006). Short and long-term mortality with nesiritide. American Heart Journal, 152, 1084–1090.

    Article  CAS  PubMed  Google Scholar 

  56. Chen, H. H., Glockner, J. F., Schirger, J. A., Cataliotti, A., Redfield, M. M., & Burnett, J. C., Jr. (2012). Novel protein therapeutics for systolic heart failure: chronic subcutaneous B-type natriuretic peptide. Journal of the American College of Cardiology, 60, 2305–2312.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Yancy, C. W., Krum, H., Massie, B. M., Silver, M. A., Stevenson, L. W., Cheng, M., Kim, S. S., Evans, R., & Investigators, F. I. (2008). Safety and efficacy of outpatient nesiritide in patients with advanced heart failure: results of the second follow-up serial infusions of nesiritide (FUSION II) trial. Circulation. Heart Failure, 1, 9–16.

    Article  CAS  PubMed  Google Scholar 

  58. Colucci, W. S., Elkayam, U., Horton, D. P., Abraham, W. T., Bourge, R. C., Johnson, A. D., Wagoner, L. E., Givertz, M. M., Liang, C. S., Neibaur, M., Haught, W. H., & LeJemtel, T. H. (2000). Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide study group. New England Journal of Medicine, 343, 246–253.

    Article  CAS  PubMed  Google Scholar 

  59. Publication Committee for the VMAC Investigators (2002). Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial. Journal of the American Medical Association, 287, 1531–1540.

  60. Chen, H. H., Anstrom, K. J., Givertz, M. M., Stevenson, L. W., Semigran, M. J., Goldsmith, S. R., Bart, B. A., Bull, D. A., Stehlik, J., LeWinter, M. M., Konstam, M. A., Huggins, G. S., Rouleau, J. L., O’Meara, E., Tang, W. H., Starling, R. C., Butler, J., Deswal, A., Felker, G. M., O’Connor, C. M., Bonita, R. E., Margulies, K. B., Cappola, T. P., Ofili, E. O., Mann, D. L., Davila-Roman, V. G., McNulty, S. E., Borlaug, B. A., Velazquez, E. J., Lee, K. L., Shah, M. R., Hernandez, A. F., Braunwald, E., & Redfield, M. M. (2013). Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction: the rose acute heart failure randomized trial. JAMA, 310, 2533–2543.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Hata, N., Seino, Y., Tsutamoto, T., Hiramitsu, S., Kaneko, N., Yoshikawa, T., Yokoyama, H., Tanaka, K., Mizuno, K., Nejima, J., & Kinoshita, M. (2008). Effects of carperitide on the long-term prognosis of patients with acute decompensated chronic heart failure: the PROTECT multicenter randomized controlled study. Circulation Journal : Official Journal of the Japanese Circulation Society, 72, 1787–1793.

    Article  CAS  Google Scholar 

  62. Cody, R. J., Atlas, S. A., Laragh, J. H., Kubo, S. H., Covit, A. B., Ryman, K. S., Shaknovich, A., Pondolfino, K., Clark, M., Camargo, M. J., et al. (1986). Atrial natriuretic factor in normal subjects and heart failure patients. Plasma levels and renal, hormonal, and hemodynamic responses to peptide infusion. Journal of Clinical Investigation, 78, 1362–1374.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Saito, Y., Nakao, K., Nishimura, K., Sugawara, A., Okumura, K., Obata, K., Sonoda, R., Ban, T., Yasue, H., & Imura, H. (1987). Clinical application of atrial natriuretic polypeptide in patients with congestive heart failure: beneficial effects on left ventricular function. Circulation, 76, 115–124.

    Article  CAS  PubMed  Google Scholar 

  64. Bryan, P. M., Xu, X., Dickey, D. M., Chen, Y., & Potter, L. R. (2007). Renal hyporesponsiveness to atrial natriuretic peptide in congestive heart failure results from reduced atrial natriuretic peptide receptor concentrations. American Journal of Physiology. Renal Physiology, 292, F1636–F1644.

    Article  CAS  PubMed  Google Scholar 

  65. Lisy, O., Huntley, B. K., McCormick, D. J., Kurlansky, P. A., & Burnett, J. C., Jr. (2008). Design, synthesis, and actions of a novel chimeric natriuretic peptide: CD-NP. Journal of the American College of Cardiology, 52, 60–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Langenickel, T. H., Buttgereit, J., Pagel-Langenickel, I., Lindner, M., Monti, J., Beuerlein, K., Al-Saadi, N., Plehm, R., Popova, E., Tank, J., Dietz, R., Willenbrock, R., & Bader, M. (2006). Cardiac hypertrophy in transgenic rats expressing a dominant-negative mutant of the natriuretic peptide receptor B. Proceedings of the National Academy of Sciences of the United States of America, 103, 4735–4740.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Wang, Y., de Waard, M. C., Sterner-Kock, A., Stepan, H., Schultheiss, H. P., Duncker, D. J., & Walther, T. (2007). Cardiomyocyte-restricted over-expression of C-type natriuretic peptide prevents cardiac hypertrophy induced by myocardial infarction in mice. European Journal of Heart Failure, 9, 548–557.

    Article  CAS  PubMed  Google Scholar 

  68. Communal, C., Singh, K., Pimentel, D. R., & Colucci, W. S. (1998). Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation, 98, 1329–1334.

    Article  CAS  PubMed  Google Scholar 

  69. Vatner, D. E., Asai, K., Iwase, M., Ishikawa, Y., Shannon, R. P., Homcy, C. J., & Vatner, S. F. (1999). Beta-adrenergic receptor-G protein-adenylyl cyclase signal transduction in the failing heart. American Journal of Cardiology, 83, 80H–85H.

    Article  CAS  PubMed  Google Scholar 

  70. Hobbs, A., Foster, P., Prescott, C., Scotland, R., & Ahluwalia, A. (2004). Natriuretic peptide receptor-C regulates coronary blood flow and prevents myocardial ischemia/reperfusion injury: novel cardioprotective role for endothelium-derived C-type natriuretic peptide. Circulation, 110, 1231–1235.

    Article  CAS  PubMed  Google Scholar 

  71. Hayoz, D. D. H., Munzel, T., Hornig, B., Zeiher, A. M., Just, H., Brunner, H. R., & Zelis, R. (1993). Adaptive and maladaptive processes: flow-mediated dilation is abnormal in congestive heart failure. Circulation, 87, 92–96.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank ECTRS ltd.

Conflict of Interest

The authors declare no conflicts of interests in relation to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel E. Egom.

Additional information

Associate Editor Emanuele Barbato oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egom, E.E. BNP and Heart Failure: Preclinical and Clinical Trial Data. J. of Cardiovasc. Trans. Res. 8, 149–157 (2015). https://doi.org/10.1007/s12265-015-9619-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-015-9619-3

Keywords

Navigation