Skip to main content

Advertisement

Log in

Cardiac Electrical Activity in a Genomically “Humanized” Chromogranin A Monogenic Mouse Model with Hyperadrenergic Hypertension

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The prohormone chromogranin A (CHGA) is ubiquitously found in vesicles of adrenal chromaffin cells and adrenergic neurons, and it is processed to the hypotensive hormone peptide catestatin (CST). Both CHGA and CST regulate blood pressure and cardiac function. This study addresses their role in cardiac electrical activity. We have generated two genomically “humanized” transgenic mouse strains (Tg31CHGA+/+; Chga−/− (HumCHGA31) and Tg19CHGA+/+; Chga−/− (HumCHGA19)) with varied CHGA expression and the ability to rescue the Chga−/− phenotype (hypertensive, hyperadrenergic with dilated cardiomyopathy). The normotensive HumCHGA31 mice express CHGA at levels comparable to wild-type. In contrast, the hypertensive HumCHGA19 mice have low levels of CHGA. EKG recordings revealed that the QT interval, R-amplitude, and QRS time-voltage integral are markedly longer in HumCHGA19 compared to wild-type and HumCHGA31 mice. These differences are accompanied by increased heart rate and QT variability, indicating that ventricular assault happens in a status of low levels of circulating CST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

au:

Arbitrary unit

BP:

Blood pressure

Chga :

Mouse chromogranin A gene

CHGA :

Human chromogranin A gene

CHGA:

Chromogranin A protein

CI:

Statistical confidence interval

CST:

Catestatin

cv:

Coefficient of variation = [standard deviation/sample mean]

DBP:

Diastolic BP

DCM:

Dilated cardiomyopathy

EKG:

Electrocardiography

HR:

Heart rate

HumCHGA19:

Genomically “humanized” transgenic mice Tg19CHGA+/+Chga−/−

HumCHGA31:

Genomically “humanized” transgenic mice Tg31CHGA+/+Chga−/−

HRV:

Heart rate variability

PQ:

Atrio-ventricular conduction time

QRSd:

Duration of QRS-wave complex

QTb:

Bazett-corrected QT interval

QTb/PQ:

Cardiomyopathy index

QTu:

Uncorrected QT interval

QTVI:

QT variability index

RR:

Sinus cycle length

SBP:

Systolic BP

WT:

Wild-type mice

References

  1. Taupenot, L., Harper, K. L., & O’Connor, D. T. (2003). The chromogranin-secretogranin family. New England Journal of Medicine, 348, 1134–1149.

    Article  CAS  PubMed  Google Scholar 

  2. Helle, K. B. (2000). The chromogranins. Historical perspectives. Advances in Experimental Medicine and Biology, 482, 3–20.

    Article  CAS  PubMed  Google Scholar 

  3. Iacangelo, A. L., & Eiden, L. E. (1995). Chromogranin A: current status as a precursor for bioactive peptides and a granulogenic/sorting factor in the regulated secretory pathway. Regulatory Peptides, 58, 65–88.

    Article  CAS  PubMed  Google Scholar 

  4. Mahapatra, N. R., Taupenot, L., Courel, M., Mahata, S. K., & O’Connor, D. T. (2008). The trans-Golgi proteins SCLIP and SCG10 interact with chromogranin A to regulate neuroendocrine secretion. Biochemistry, 47, 7167–7178.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Elias, S., Delestre, C., Ory, S., Marais, S., Courel, M., Vazquez-Martinez, R., et al. (2012). Chromogranin A induces the biogenesis of granules with calcium- and actin-dependent dynamics and exocytosis in constitutively secreting cells. Endocrinology, 153, 4444–4456.

    Article  CAS  PubMed  Google Scholar 

  6. Mahapatra, N. R., Mahata, M., Mahata, S. K., & O’Connor, D. T. (2006). The chromogranin A fragment catestatin: specificity, potency and mechanism to inhibit exocytotic secretion of multiple catecholamine storage vesicle co-transmitters. Journal of Hypertension, 24, 895–904.

    Article  CAS  PubMed  Google Scholar 

  7. Pasqua, T., Corti, A., Gentile, S., Pochini, L., Bianco, M., Metz-Boutigue, M. H., et al. (2013). Full-length human chromogranin-A cardioactivity: myocardial, coronary, and stimulus-induced processing evidence in normotensive and hypertensive male rat hearts. Endocrinology, 154, 3353–3365.

    Article  PubMed  Google Scholar 

  8. Penna, C., Alloatti, G., Gallo, M. P., Cerra, M. C., Levi, R., Tullio, F., et al. (2010). Catestatin improves post-ischemic left ventricular function and decreases ischemia/reperfusion injury in heart. Cellular and Molecular Neurobiology, 30, 1171–1179.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. O’Connor, D. T., Takiyyuddin, M. A., Printz, M. P., Dinh, T. Q., Barbosa, J. A., Rozansky, D. J., et al. (1999). Catecholamine storage vesicle protein expression in genetic hypertension. Blood Pressure, 8, 285–295.

    Article  PubMed  Google Scholar 

  10. Takiyyuddin, M. A., Parmer, R. J., Kailasam, M. T., Cervenka, J. H., Kennedy, B., Ziegler, M. G., et al. (1995). Chromogranin A in human hypertension. Influence of heredity. Hypertension, 26, 213–220.

    Article  CAS  PubMed  Google Scholar 

  11. Kennedy, B. P., Mahata, S. K., O’Connor, D. T., & Ziegler, M. G. (1998). Mechanism of cardiovascular actions of the chromogranin A fragment catestatin in vivo. Peptides, 19, 1241–1248.

    Article  CAS  PubMed  Google Scholar 

  12. Mahata, S. K., Mahata, M., Livsey Taylor, C. V., Taupenot, L., Parmer, R. J., & O’Connor, D. T. (2000). The novel catecholamine release-inhibitory peptide catestatin (chromogranin A344-364). Properties and function. Advances in Experimental Medicine and Biology, 482, 263–277.

    Article  CAS  PubMed  Google Scholar 

  13. O’Connor, D. T., Kailasam, M. T., Kennedy, B. P., Ziegler, M. G., Yanaihara, N., & Parmer, R. J. (2002). Early decline in the catecholamine release-inhibitory peptide catestatin in humans at genetic risk of hypertension. Journal of Hypertension, 20, 1335–1345.

    Article  PubMed  Google Scholar 

  14. O’Connor, D. T., Zhu, G., Rao, F., Taupenot, L., Fung, M. M., Das, M., et al. (2008). Heritability and genome-wide linkage in US and Australian twins identify novel genomic regions controlling chromogranin a: implications for secretion and blood pressure. Circulation, 118, 247–257.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Gayen, J. R., Gu, Y., O’Connor, D. T., & Mahata, S. K. (2009). Global disturbances in autonomic function yield cardiovascular instability and hypertension in the chromogranin a null mouse. Endocrinology, 150, 5027–5035.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Mahapatra, N. R., O’Connor, D. T., Vaingankar, S. M., Hikim, A. P., Mahata, M., Ray, S., et al. (2005). Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. Journal of Clinical Investigation, 115, 1942–1952.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Dev, N. B., Gayen, J. R., O’Connor, D. T., & Mahata, S. K. (2010). Chromogranin A and the autonomic system: decomposition of heart rate variability and rescue by its catestatin fragment. Endocrinology, 151, 2760–2768.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Meng, L., Wang, J., Ding, W., Han, P., Yang, Y., Qi, L., et al. (2013). Plasma catestatin level in patients with acute myocardial infarction and its correlation with ventricular remodelling. Postgraduate Medical Journal, 89, 193–196.

    Article  PubMed  Google Scholar 

  19. Puddu, P. E., Pasternac, A., Tubau, J. F., Krol, R., Farley, L., & Champlain, J. D. (1983). QT interval prolongation and increased plasma catecholamine levels in patients with mitral valve prolapse. American Heart Journal, 105, 422–428.

    Article  CAS  PubMed  Google Scholar 

  20. Algra, A., Tijssen, J. G., Roelandt, J. R., Pool, J., & Lubsen, J. (1991). QTc prolongation measured by standard 12-lead electrocardiography is an independent risk factor for sudden death due to cardiac arrest. Circulation, 83, 188–194.

    Article  Google Scholar 

  21. Vaingankar, S. M., Li, Y., Corti, A., Biswas, N., Gayen, J., O’Connor, D. T., et al. (2010). Long human CHGA flanking chromosome 14 sequence required for optimal BAC transgenic “rescue” of disease phenotypes in the mouse Chga knockout. Physiological Genomics, 41, 91–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Steare, S. E., Dubowitz, V., & Benatar, A. (1992). Subclinical cardiomyopathy in Becker muscular dystrophy. British Heart Journal, 68, 304–308.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Mir, S. A., Chatterjee, A., Mitra, A., Pathak, K., Mahata, S. K., & Sarkar, S. (2012). Inhibition of signal transducer and activator of transcription 3 (STAT3) attenuates interleukin-6 (IL-6)-induced collagen synthesis and resultant hypertrophy in rat heart. The Journal of Biological Chemistry, 287, 2666–2677.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Sen, S., Tarazi, R. C., Khairallah, P. A., & Bumpus, F. M. (1974). Cardiac hypertrophy in spontaneously hypertensive rats. Circulation Research, 35, 775–781.

    Article  CAS  PubMed  Google Scholar 

  25. Bazett, H. C. (1920). An analysis of time relations of electrocardiogram. Heart, 7, 53–70.

    Google Scholar 

  26. Decher, N., Wemhoner, K., Rinne, S., Netter, M. F., Zuzarte, M., Aller, M. I., et al. (2011). Knock-out of the potassium channel TASK-1 leads to a prolonged QT interval and a disturbed QRS complex. Cellular Physiology and Biochemistry, 28, 77–86.

    Article  CAS  PubMed  Google Scholar 

  27. Mitchell, G. F., Jeron, A., & Koren, G. (1998). Measurement of heart rate and Q-T interval in the conscious mouse. The American Journal of Physiology, 274, H747–H751.

    CAS  PubMed  Google Scholar 

  28. Berger, R. D., Kasper, E. K., Baughman, K. L., Marban, E., Calkins, H., & Tomaselli, G. F. (1997). Beat-to-beat QT interval variability. Circulation, 96, 1557–1565.

    Article  CAS  PubMed  Google Scholar 

  29. Xing, S., Tsaih, S. W., Yuan, R., Svenson, K. L., Jorgenson, L. M., So, M., et al. (2009). Genetic influence on electrocardiogram time intervals and heart rate in aging mice. American Journal of Physiology. Heart and Circulatory Physiology, 296, H1907–H1913.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Atterhog, J. H., & Loogna, E. (1977). PR interval in relation to heart rate during exercise and the influence of posture and autonomic tone. Journal of Electrocardiology, 10, 331–336.

    Article  CAS  PubMed  Google Scholar 

  31. VanderBrink, B. A., Link, M. S., Aronovitz, M. J., Saba, S., Sloa, S. B., Homoud, M. K., et al. (1999). Assessment of atrioventricular nodal physiology in the mouse. Journal of Interventional Cardiac Electrophysiology, 3, 207–212.

    Article  CAS  PubMed  Google Scholar 

  32. Wang, X. J., & Ai, H. B. (1999). Studies on the relativity of power spectrum of QRS complex with heart rate, duration of QRS and Vp-p of QRS. Shandog J Biomed Eng, 18, 32–38.

    Google Scholar 

  33. Vaingankar, S. M., Li, Y., Biswas, N., Gayen, J., Choksi, S., Rao, F., et al. (2010). Effects of chromogranin A deficiency and excess in vivo: biphasic blood pressure and catecholamine responses. Journal of Hypertension, 28, 817–825.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Extramiana, F., Tavernier, R., Maison-Blanche, P., Neyroud, N., Jordaens, L., Leenhardt, A., et al. (2000). Ventricular repolarization and Holter monitoring. Effect of sympathetic blockage on the QT/RR ratio. Archives des Maladies du Coeur et des Vaisseaux, 93, 1277–1283.

    CAS  PubMed  Google Scholar 

  35. Holt, J. H., Barnard, A. C. L., & Lynn, M. S. (1969). A study of the human heart as a multiple dipole electrical source. II. Diagnosis and quantification of left ventricular hypertrophy. Circulation, 40, 697–710.

    Article  PubMed  Google Scholar 

  36. Dunn, F. G., Pfeffer, M. A., & Frolich, E. D. (1978). ECG alterations with progressive left ventricular hypertrophy in spontaneous hypertension. Clinical and Experimental Hypertension, 1, 67–86.

    Article  CAS  PubMed  Google Scholar 

  37. Oikarinen, L., Nieminen, M. S., Viitasalo, M., Toivonen, L., Wachtell, K., Papademetriou, V., et al. (2001). Relation of QT interval and QT dispersion to echocardiographic left ventricular hypertrophy and geometric pattern in hypertensive patients. The LIFE study. The Losartan Intervention For Endpoint Reduction. Journal of Hypertension, 19, 1883–1891.

    Article  CAS  PubMed  Google Scholar 

  38. Bhargava, V., & Goldberger, A. (1981). Myocardial infarction diminishes both low and high frequency QRS potentials: power spectrum analysis of lead II. Journal of Electrocardiology, 14, 57–60.

    Article  CAS  PubMed  Google Scholar 

  39. Comi, L. I., Nigro, G., Politano, L., & Petretta, V. R. (1992). The cardiomyopathy of Duchenne/Becker consultants. International Journal of Cardiology, 34, 297–305.

    Article  CAS  PubMed  Google Scholar 

  40. Schlegel, T. T. K. W., DePalma, J. L., Feiveson, A. H., Wilson, J. S., Rahman, M. A., & Bungo, M. W. (2004). Real-time 12-lead high-frequency QRS electrocardiography for enhanced detection of myocardial ischemia and coronary artery disease. Mayo Clinic Proceedings, 79, 339–350.

    Article  PubMed  Google Scholar 

  41. Ceconi, C., Ferrari, R., Bachetti, T., Opasic, C., Volterrani, M., Colombo, B., et al. (2002). Chromogranin A in heart failure; a novel neurohumoral factor and a predictor for mortality. European Heart Journal, 23, 967–974.

    Article  CAS  PubMed  Google Scholar 

  42. Omland, T., Dickstein, K., & Syversen, U. (2003). Association between plasma chromogranin A concentration and long-term mortality after myocardial infarction. American Journal of Medicine, 114, 25–30.

    Article  CAS  PubMed  Google Scholar 

  43. Mahata, S. K., Mahata, M., Fung, M. M., & O’Connor, D. T. (2010). Catestatin: a multifunctional peptide from chromogranin A. Regulatory Peptides, 165, 52–62.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, D., Lavaux, T., Voegeli, A. C., Lavigne, T., Castelain, V., Meyer, N., et al. (2008). Prognostic value of chromogranin A at admission in critically ill patients: a cohort study in a medical intensive care unit. Clinical Chemistry, 54, 1947–1503.

    Google Scholar 

  45. Malik, M. (2004). Errors and misconceptions in ECG measurement used for the detection of drug induced QT-interval prolongation. Journal of Electrocardiology, 37, 25–33A.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Institutes of Health—K01DK069613 and R01 HL108629 to Vaingankar, S.M. We would like to thank Professors O’Connor, D. T., Pajor A., Mahata, S. K., and Ahmad, H.R. for their critical input.

Disclosures

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sucheta M. Vaingankar.

Additional information

Editor-in-Chief Jennifer L. Hall oversaw the review of this article

Nagendu B. Dev and Saiful A. Mir contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(GIF 194 kb)

High resolution image (EPS 41,757 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dev, N.B., Mir, S.A., Gayen, J.R. et al. Cardiac Electrical Activity in a Genomically “Humanized” Chromogranin A Monogenic Mouse Model with Hyperadrenergic Hypertension. J. of Cardiovasc. Trans. Res. 7, 483–493 (2014). https://doi.org/10.1007/s12265-014-9563-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-014-9563-7

Keywords

Navigation