Skip to main content

Advertisement

Log in

Distribution and Functional Characteristics of Voltage-Gated Sodium Channels in Immature Cochlear Hair Cells

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Voltage-gated sodium channels (VGSCs) are transiently expressed in cochlear hair cells before hearing onset and play an indispensable role in shaping spontaneous activity. In this study, we showed that Na+ currents shaped the spontaneous action potentials in developing mouse inner hair cells (IHCs) by decreasing the time required for the membrane potential to reach the action-potential threshold. In immature IHCs, we identified 9 known VGSC subtypes (Nav1.1α–1.9α), among which Nav1.7α was the most highly expressed subtype and the main contributor to Na+ currents in developing hair cells. Electrophysiological recordings of two cochlea-specific Nav1.7 variants (CbmNav1.7a and CbmNav1.7b) revealed a novel loss-of-function mutation (C934R) at the extracellular linker between segments 5 and 6 of domain II. In addition, post-transcriptional modification events, such as alternative splicing and RNA editing, amended the gating properties and kinetic features of CbmNav1.7a(C934). These results provide molecular and functional characteristics of VGSCs in mammalian IHCs and their contributions to spontaneous physiological activity during cochlear maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fettiplace R, Hackney CM. The sensory and motor roles of auditory hair cells. Nat Rev Neurosci 2006, 7: 19–29.

    Article  CAS  Google Scholar 

  2. Johnson SL, Eckrich T, Kuhn S, Zampini V, Franz C, Ranatunga KM, et al. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells. Nat Neurosci 2011, 14: 711–717.

    Article  CAS  Google Scholar 

  3. Babola TA, Li S, Gribizis A, Lee BJ, Issa JB, Wang HC, et al. Homeostatic control of spontaneous activity in the developing auditory system. Neuron 2018, 99: 511–524 e515.

    Google Scholar 

  4. Tritsch NX, Rodriguez-Contreras A, Crins TT, Wang HC, Borst JG, Bergles DE. Calcium action potentials in hair cells pattern auditory neuron activity before hearing onset. Nat Neurosci 2010, 13: 1050–1052.

    Article  CAS  Google Scholar 

  5. Marcotti W, Johnson SL, Kros CJ. A transiently expressed SK current sustains and modulates action potential activity in immature mouse inner hair cells. J Physiol 2004, 560: 691–708.

    Article  CAS  Google Scholar 

  6. Johnson SL, Adelman JP, Marcotti W. Genetic deletion of SK2 channels in mouse inner hair cells prevents the developmental linearization in the Ca2+ dependence of exocytosis. J Physiol 2007, 583: 631–646.

    Article  CAS  Google Scholar 

  7. Evans MG, Fuchs PA. Tetrodotoxin-sensitive, voltage-dependent sodium currents in hair cells from the alligator cochlea. Biophys J 1987, 52: 649–652.

    Article  CAS  Google Scholar 

  8. Marcotti W, Johnson SL, Rusch A, Kros CJ. Sodium and calcium currents shape action potentials in immature mouse inner hair cells. J Physiol 2003, 552: 743–761.

    Article  CAS  Google Scholar 

  9. D OM, Hudspeth AJ. Effects of cochlear loading on the motility of active outer hair cells. Proc Natl Acad Sci USA 2013, 110: 5474–5479.

  10. Oliver D, Plinkert P, Zenner HP, Ruppersberg JP. Sodium current expression during postnatal development of rat outer hair cells. Pflugers Arch 1997, 434: 772–778.

    Article  CAS  Google Scholar 

  11. Housley GD, Marcotti W, Navaratnam D, Yamoah EN. Hair cells–beyond the transducer. J Membr Biol 2006, 209: 89–118.

    Article  CAS  Google Scholar 

  12. Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 2000, 26: 13–25.

    Article  CAS  Google Scholar 

  13. Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA. Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol Rev 2005, 57: 387–395.

    Article  CAS  Google Scholar 

  14. Zhou Y, Ji Y. Voltage-gated sodium channels involve in sensory information processing. CNS Neurol Disord Drug Targets 2018.

  15. Masetto S, Bosica M, Correia MJ, Ottersen OP, Zucca G, Perin P, et al. Na+ currents in vestibular type I and type II hair cells of the embryo and adult chicken. J Neurophysiol 2003, 90: 1266–1278.

    Article  CAS  Google Scholar 

  16. Wooltorton JR, Gaboyard S, Hurley KM, Price SD, Garcia JL, Zhong M, et al. Developmental changes in two voltage-dependent sodium currents in utricular hair cells. J Neurophysiol 2007, 97: 1684–1704.

    Article  CAS  Google Scholar 

  17. Eckrich T, Varakina K, Johnson SL, Franz C, Singer W, Kuhn S, et al. Development and function of the voltage-gated sodium current in immature mammalian cochlear inner hair cells. PLoS One 2012, 7: e45732.

    Article  CAS  Google Scholar 

  18. Zhou Y, Fang FH, Liu ZR, Ji YH. Dissection of voltage-gated sodium channels in developing cochlear sensory epithelia. Protein Cell 2015, 6: 458–462.

    Article  Google Scholar 

  19. Blaustein MP, Goldman DE. The action of certain polyvalent cations on the voltage-clamped lobster axon. J Gen Physiol 1968, 51: 279–291.

    Article  CAS  Google Scholar 

  20. Blanton MG, Kriegstein AR. Spontaneous action potential activity and synaptic currents in the embryonic turtle cerebral cortex. J Neurosci 1991, 11: 3907–3923.

    Article  CAS  Google Scholar 

  21. Soto F, Ma X, Cecil JL, Vo BQ, Culican SM, Kerschensteiner D. Spontaneous activity promotes synapse formation in a cell-type-dependent manner in the developing retina. J Neurosci 2012, 32: 5426–5439.

    Article  CAS  Google Scholar 

  22. Mooney R, Penn AA, Gallego R, Shatz CJ. Thalamic relay of spontaneous retinal activity prior to vision. Neuron 1996, 17: 863–874.

    Article  CAS  Google Scholar 

  23. Murase S, Owens DF, McKay RD. In the newborn hippocampus, neurotrophin-dependent survival requires spontaneous activity and integrin signaling. J Neurosci 2011, 31: 7791–7800.

    Article  CAS  Google Scholar 

  24. Lippe WR. Rhythmic spontaneous activity in the developing avian auditory system. J Neurosci 1994, 14: 1486–1495.

    Article  CAS  Google Scholar 

  25. Johnson SL, Kuhn S, Franz C, Ingham N, Furness DN, Knipper M, et al. Presynaptic maturation in auditory hair cells requires a critical period of sensory-independent spiking activity. Proc Natl Acad Sci USA 2013, 110: 8720–8725.

    Article  CAS  Google Scholar 

  26. Marcotti W, Kros CJ. Developmental expression of the potassium current IK,n contributes to maturation of mouse outer hair cells. J Physiol 1999, 520: 653–660.

    Article  CAS  Google Scholar 

  27. Marcotti W, Johnson SL, Kros CJ. Effects of intracellular stores and extracellular Ca(2+) on Ca(2+)-activated K(+) currents in mature mouse inner hair cells. J Physiol 2004, 557: 613–633.

    Article  CAS  Google Scholar 

  28. Hackney CM, Mahendrasingam S, Penn A, Fettiplace R. The concentrations of calcium buffering proteins in mammalian cochlear hair cells. J Neurosci 2005, 25: 7867–7875.

    Article  CAS  Google Scholar 

  29. Dou H, Vazquez AE, Namkung Y, Chu H, Cardell EL, Nie L, et al. Null mutation of alpha1D Ca2+ channel gene results in deafness but no vestibular defect in mice. J Assoc Res Otolaryngol 2004, 5: 215–226.

    Article  Google Scholar 

  30. Sangameswaran L, Fish LM, Koch BD, Rabert DK, Delgado SG, Ilnicka M, et al. A novel tetrodotoxin-sensitive, voltage-gated sodium channel expressed in rat and human dorsal root ganglia. J Biol Chem 1997, 272: 14805–14809.

    Article  CAS  Google Scholar 

  31. Cummins TR, Howe JR, Waxman SG. Slow closed-state inactivation: a novel mechanism underlying ramp currents in cells expressing the hNE/PN1 sodium channel. J Neurosci 1998, 18: 9607–9619.

    Article  CAS  Google Scholar 

  32. Waxman SG. Neurobiology: a channel sets the gain on pain. Nature 2006, 444: 831–832.

    Article  CAS  Google Scholar 

  33. Blair NT, Bean BP. Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J Neurosci 2002, 22: 10277–10290.

    Article  CAS  Google Scholar 

  34. Patino GA, Isom LL. Electrophysiology and beyond: multiple roles of Na+ channel beta subunits in development and disease. Neurosci Lett 2010, 486: 53–59.

    Article  CAS  Google Scholar 

  35. Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996, 87: 543–552.

    Article  CAS  Google Scholar 

  36. Plummer NW, McBurney MW, Meisler MH. Alternative splicing of the sodium channel SCN8A predicts a truncated two-domain protein in fetal brain and non-neuronal cells. J Biol Chem 1997, 272: 24008–24015.

    Article  CAS  Google Scholar 

  37. Chatelier A, Dahllund L, Eriksson A, Krupp J, Chahine M. Biophysical properties of human Nav1.7 splice variants and their regulation by protein kinase A. J Neurophysiol 2008, 99: 2241–2250.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Lin Chen (University of Science and Technology of China) and Dr. Juanmei Yang (Eye and ENT Hospital of Fudan University) for valuable help with cochlear microscopic anatomy. This work was supported by the National Natural Science Foundation of China (31571032, 31771191, and 81730028), the National Basic Research Development Program of China (SQ2017YFSF080012), and the Postdoctoral Science Foundation of China (2018M640407).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Wu or Yonghua Ji.

Ethics declarations

Conflict of interest

All authors claim that there are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 343 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Xia, C., Yin, M. et al. Distribution and Functional Characteristics of Voltage-Gated Sodium Channels in Immature Cochlear Hair Cells. Neurosci. Bull. 36, 49–65 (2020). https://doi.org/10.1007/s12264-019-00415-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-019-00415-3

Keywords

Navigation