Skip to main content

Advertisement

Log in

Pericyte Plasticity in the Brain

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Cerebral pericytes are perivascular cells that stabilize blood vessels. Little is known about the plasticity of pericytes in the adult brain in vivo. Recently, using state-of-the-art technologies, including two-photon microscopy in combination with sophisticated Cre/loxP in vivo tracing techniques, a novel role of pericytes was revealed in vascular remodeling in the adult brain. Strikingly, after pericyte ablation, neighboring pericytes expand their processes and prevent vascular dilatation. This new knowledge provides insights into pericyte plasticity in the adult brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rouget C. Mémoire sur le développement, la structure et les proprietés physiologiques des capillaires sanguins et lymphatiques. Arch de Phys 1873, 5: 603.

    Google Scholar 

  2. Zimmermann KW. Der feinere Bau der Blutkapillaren, vol 68., Berlin: Springer, 1923: 29–109.

    Book  Google Scholar 

  3. Schrimpf C, Teebken OE, Wilhelmi M, Duffield JS. The role of pericyte detachment in vascular rarefaction. J Vasc Res 2014, 51: 247–258.

    Article  PubMed  Google Scholar 

  4. Hirschi KK, D’Amore PA. Pericytes in the microvasculature. Cardiovasc Res 1996, 32: 687–698.

    Article  CAS  PubMed  Google Scholar 

  5. Diaz-Flores L, Gutierrez R, Varela H, Rancel N, Valladares F. Microvascular pericytes: a review of their morphological and functional characteristics. Histol Histopathol 1991, 6: 269–286.

    CAS  PubMed  Google Scholar 

  6. Shepro D, Morel NM. Pericyte physiology. FASEB J 1993, 7: 1031–1038.

    Article  CAS  PubMed  Google Scholar 

  7. Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 2011, 21: 193–215.

    Article  CAS  PubMed  Google Scholar 

  8. Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes at the intersection between tissue regeneration and pathology. Clin Sci (Lond) 2015, 128: 81–93.

    Article  CAS  Google Scholar 

  9. Enge M, Bjarnegard M, Gerhardt H, Gustafsson E, Kalen M, Asker N, et al. Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J 2002, 21: 4307–4316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H, et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 2001, 153: 543–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pallone TL, Zhang Z, Rhinehart K. Physiology of the renal medullary microcirculation. Am J Physiol Renal Physiol 2003, 284: F253–266.

    Article  CAS  PubMed  Google Scholar 

  12. Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 2017, 18: 419–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim JA, Tran ND, Li Z, Yang F, Zhou W, Fisher MJ. Brain endothelial hemostasis regulation by pericytes. J Cereb Blood Flow Metab 2006, 26: 209–217.

    Article  CAS  PubMed  Google Scholar 

  14. Mishra A, Reynolds JP, Chen Y, Gourine AV, Rusakov DA, Attwell D. Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nat Neurosci 2016, 19: 1619–1627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Azevedo PO, Lousado L, Paiva AE, Andreotti JP, Santos GSP, Sena IFG, et al. Endothelial cells maintain neural stem cells quiescent in their niche. Neuroscience 2017, 363: 62–65.

    Article  CAS  PubMed  Google Scholar 

  16. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 2010, 68: 409–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thanabalasundaram G, Schneidewind J, Pieper C, Galla HJ. The impact of pericytes on the blood-brain barrier integrity depends critically on the pericyte differentiation stage. Int J Biochem Cell Biol 2011, 43: 1284–1293.

    Article  CAS  PubMed  Google Scholar 

  18. Kamouchi M, Ago T, Kitazono T. Brain pericytes: emerging concepts and functional roles in brain homeostasis. Cell Mol Neurobiol 2011, 31: 175–193.

    Article  PubMed  Google Scholar 

  19. Guerra DAP, Paiva AE, Sena IFG, Azevedo PO, Silva WN, Mintz A, et al. Targeting glioblastoma-derived pericytes improves chemotherapeutic outcome. Angiogenesis 2018. https://doi.org/10.1007/s10456-018-9621-x.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sena IFG, Paiva AE, Prazeres P, Azevedo PO, Lousado L, Bhutia SK, et al. Glioblastoma-activated pericytes support tumor growth via immunosuppression. Cancer Med 2018, 7: 1232–1239.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Andreotti JP, Lousado L, Magno LAV, Birbrair A. Hypothalamic neurons take center stage in the neural stem cell niche. Cell Stem Cell 2017, 21: 293–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Park DY, Lee J, Kim J, Kim K, Hong S, Han S, et al. Plastic roles of pericytes in the blood-retinal barrier. Nat Commun 2017, 8: 15296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Andreotti JP, Paiva AE, Prazeres P, Guerra DAP, Silva WN, Vaz RS, et al. The role of natural killer cells in the uterine microenvironment during pregnancy. Cell Mol Immunol 2018. https://doi.org/10.1038/s41423-018-0023-1.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tu Z, Li Y, Smith DS, Sheibani N, Huang S, Kern T, et al. Retinal pericytes inhibit activated T cell proliferation. Invest Ophthalmol Vis Sci 2011, 52: 9005–9010.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Santos GSP, Prazeres P, Mintz A, Birbrair A. Role of pericytes in the retina. Eye (Lond) 2018, 32: 483–486.

    Article  CAS  Google Scholar 

  26. Stark K, Eckart A, Haidari S, Tirniceriu A, Lorenz M, von Bruhl ML, et al. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat Immunol 2013, 14: 41–51.

    Article  CAS  PubMed  Google Scholar 

  27. Castejon OJ. Ultrastructural pathology of cortical capillary pericytes in human traumatic brain oedema. Folia Neuropathol 2011, 49: 162–173.

    PubMed  Google Scholar 

  28. De La Fuente AG, Lange S, Silva ME, Gonzalez GA, Tempfer H, van Wijngaarden P, et al. Pericytes stimulate oligodendrocyte progenitor cell differentiation during CNS remyelination. Cell Rep 2017, 20: 1755–1764.

    Article  CAS  Google Scholar 

  29. Birbrair A, Borges IDT, Gilson Sena IF, Almeida GG, da Silva Meirelles L, Goncalves R, et al. How plastic are pericytes? Stem Cells Dev 2017, 26: 1013–1019.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Asada N, Kunisaki Y, Pierce H, Wang Z, Fernandez NF, Birbrair A, et al. Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat Cell Biol 2017, 19: 214–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khan JA, Mendelson A, Kunisaki Y, Birbrair A, Kou Y, Arnal-Estape A, et al. Fetal liver hematopoietic stem cell niches associate with portal vessels. Science 2016, 351: 176–180.

    Article  CAS  PubMed  Google Scholar 

  32. Azevedo PO, Sena IFG, Andreotti JP, Carvalho-Tavares J, Alves-Filho JC, Cunha TM, et al. Pericytes modulate myelination in the central nervous system. J Cell Physiol 2018, 233: 5523–5529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Borges I, Sena I, Azevedo P, Andreotti J, Almeida V, Paiva A, et al. Lung as a niche for hematopoietic progenitors. Stem Cell Rev 2017, 13: 567–574.

    Article  PubMed Central  Google Scholar 

  34. Alvarenga EC, Silva WN, Vasconcellos R, Paredes-Gamero EJ, Mintz A, Birbrair A. Promyelocytic leukemia protein in mesenchymal stem cells is essential for leukemia progression. Ann Hematol 2018, 97: 1749–1755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sakuma R, Kawahara M, Nakano-Doi A, Takahashi A, Tanaka Y, Narita A, et al. Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke. J Neuroinflammation 2016, 13: 57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gouveia A, Seegobin M, Kannangara TS, He L, Wondisford F, Comin CH, et al. The aPKC-CBP pathway regulates post-stroke neurovascular remodeling and functional recovery. Stem Cell Rep 2017, 9: 1735–1744.

    Article  CAS  Google Scholar 

  37. Nakagomi T, Kubo S, Nakano-Doi A, Sakuma R, Lu S, Narita A, et al. Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells 2015, 33: 1962–1974.

    Article  CAS  PubMed  Google Scholar 

  38. Takagi T, Yoshimura S, Sakuma R, Nakano-Doi A, Matsuyama T, Nakagomi T. Novel regenerative therapies based on regionally induced multipotent stem cells in post-stroke brains: their origin, characterization, and perspective. Transl Stroke Res 2017, 8: 515–528.

    Article  CAS  PubMed  Google Scholar 

  39. Tatebayashi K, Tanaka Y, Nakano-Doi A, Sakuma R, Kamachi S, Shirakawa M, et al. Identification of multipotent stem cells in human brain tissue following stroke. Stem Cells Dev 2017, 26: 787–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stapor PC, Sweat RS, Dashti DC, Betancourt AM, Murfee WL. Pericyte dynamics during angiogenesis: new insights from new identities. J Vasc Res 2014, 51: 163–174.

    Article  PubMed  Google Scholar 

  41. Berthiaume AA, Grant RI, McDowell KP, Underly RG, Hartmann DA, Levy M, et al. Dynamic remodeling of pericytes in vivo maintains capillary coverage in the adult mouse brain. Cell Rep 2018, 22: 8–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dias Moura Prazeres PH, Sena IFG, Borges IDT, de Azevedo PO, Andreotti JP, de Paiva AE, et al. Pericytes are heterogeneous in their origin within the same tissue. Dev Biol 2017, 427: 6–11.

    Article  CAS  PubMed  Google Scholar 

  43. Nehls V, Drenckhahn D. Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. J Cell Biol 1991, 113: 147–154.

    Article  CAS  PubMed  Google Scholar 

  44. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 2002, 160: 985–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bondjers C, He L, Takemoto M, Norlin J, Asker N, Hellstrom M, et al. Microarray analysis of blood microvessels from PDGF-B and PDGF-Rbeta mutant mice identifies novel markers for brain pericytes. FASEB J 2006, 20: 1703–1705.

    Article  CAS  PubMed  Google Scholar 

  46. Birbrair A, Frenette PS. Niche heterogeneity in the bone marrow. Ann N Y Acad Sci 2016, 1370: 82–96.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Goritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisen J. A pericyte origin of spinal cord scar tissue. Science 2011, 333: 238–242.

    Article  CAS  PubMed  Google Scholar 

  48. Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, et al. Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Res 2013, 10: 67–84.

    Article  CAS  PubMed  Google Scholar 

  49. Trost A, Lange S, Schroedl F, Bruckner D, Motloch KA, Bogner B, et al. Brain and retinal pericytes: origin, function and role. Front Cell Neurosci 2016, 10: 20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Prazeres P, Almeida VM, Lousado L, Andreotti JP, Paiva AE, Santos GSP, et al. Macrophages generate pericytes in the developing brain. Cell Mol Neurobiol 2018, 38: 777–782.

    Article  CAS  PubMed  Google Scholar 

  51. Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, et al. Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev 2013, 22: 2298–2314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang ZM, et al. Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 2014, 5: 122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, et al. Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 2014, 307: C25–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Jureus A, et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 2015, 347: 1138–1142.

    Article  CAS  PubMed  Google Scholar 

  55. Vanlandewijck M, He L, Mae MA, Andrae J, Ando K, Del Gaudio F, et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 2018, 554: 475–480.

    Article  CAS  PubMed  Google Scholar 

  56. He L, Vanlandewijck M, Raschperger E, Andaloussi Mae M, Jung B, Lebouvier T, et al. Analysis of the brain mural cell transcriptome. Sci Rep 2016, 6: 35108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lousado L, Prazeres P, Andreotti JP, Paiva AE, Azevedo PO, Santos GSP, et al. Schwann cell precursors as a source for adrenal gland chromaffin cells. Cell Death Dis 2017, 8: e3072.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Silva WN, Leonel C, Prazeres PHDM, Sena IFG, Guerra DAP, Diniz IMA, et al. Role of Schwann cells in cutaneous wound healing. Wound Repair Regen 2018. https://doi.org/10.1111/wrr.12647.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pereira LX, Viana CTR, Orellano LAA, Almeida SA, Vasconcelos AC, Goes AM, et al. Synthetic matrix of polyether-polyurethane as a biological platform for pancreatic regeneration. Life Sci 2017, 176: 67–74.

    Article  CAS  PubMed  Google Scholar 

  60. Nishiyama A, Boshans L, Goncalves CM, Wegrzyn J, Patel KD. Lineage, fate, and fate potential of NG2-glia. Brain Res 2016, 1638: 116–128.

    Article  CAS  PubMed  Google Scholar 

  61. Wohl SG, Schmeer CW, Friese T, Witte OW, Isenmann S. In situ dividing and phagocytosing retinal microglia express nestin, vimentin, and NG2 in vivo. PLoS One 2011, 6: e22408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lindahl P, Johansson BR, Leveen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 1997, 277: 242–245.

    Article  CAS  PubMed  Google Scholar 

  63. Winkler EA, Bell RD, Zlokovic BV. Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling. Mol Neurodegener 2010, 5: 32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ohlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 2017, 214: 579–596.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Guimaraes-Camboa N, Cattaneo P, Sun Y, Moore-Morris T, Gu Y, Dalton ND, et al. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 2017, 20: 345–359 e345.

    Article  CAS  Google Scholar 

  66. Gerl K, Miquerol L, Todorov VT, Hugo CP, Adams RH, Kurtz A, et al. Inducible glomerular erythropoietin production in the adult kidney. Kidney Int 2015, 88: 1345–1355.

    Article  CAS  PubMed  Google Scholar 

  67. Prazeres PHDM, Turquetti AOM, Azevedo PO, Barreto RSN, Miglino MA, Mintz A, et al. Perivascular cell αv integrins as a target to treat skeletal muscle fibrosis. Int J Biochem Cell Biol 2018, 99:109–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Soderblom C, Luo X, Blumenthal E, Bray E, Lyapichev K, Ramos J, et al. Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J Neurosci 2013, 33: 13882–13887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bechmann I, Priller J, Kovac A, Bontert M, Wehner T, Klett FF, et al. Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci 2001, 14: 1651–1658.

    Article  CAS  PubMed  Google Scholar 

  70. Silva WN, Prazeres P, Paiva AE, Lousado L, Turquetti AOM, Barreto RSN, et al. Macrophage-derived GPNMB accelerates skin healing. Exp Dermatol 2018, 27: 630–635.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Guillemin GJ, Brew BJ. Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol 2004, 75: 388–397.

    Article  CAS  PubMed  Google Scholar 

  72. Crisan M, Corselli M, Chen WC, Peault B. Perivascular cells for regenerative medicine. J Cell Mol Med 2012 16: 2851–2860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wanjare M, Kusuma S, Gerecht S. Perivascular cells in blood vessel regeneration. Biotechnol J 2013, 8: 434–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Birbrair A, Delbono O. Pericytes are essential for skeletal muscle formation. Stem Cell Rev 2015, 11: 547–548.

    Article  Google Scholar 

  75. Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci 2014, 6: 245.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. Am J Physiol Cell Physiol 2013, 305: C1098–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dore-Duffy P, Katychev A, Wang X, Van Buren E. CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab 2006, 26: 613–624.

    Article  CAS  PubMed  Google Scholar 

  78. Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, et al. Skeletal muscle neural progenitor cells exhibit properties of NG2-glia. Exp Cell Res 2013, 319: 45–63.

    Article  CAS  PubMed  Google Scholar 

  79. Karow M, Sanchez R, Schichor C, Masserdotti G, Ortega F, Heinrich C, et al. Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell 2012, 11: 471–476.

    Article  CAS  PubMed  Google Scholar 

  80. Andreotti JP, Prazeres PHDM, Magno LAV, Romano-Silva MA, Mintz A, Birbrair A. Neurogenesis in the postnatal cerebellum after injury. Int J Dev Neurosci 2018 67: 33–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Birbrair A, Sattiraju A, Zhu D, Zulato G, Batista I, Nguyen VT, et al. Novel peripherally derived neural-like stem cells as therapeutic carriers for treating glioblastomas. Stem Cells Transl Med 2017, 6: 471–481.

    Article  CAS  PubMed  Google Scholar 

  82. Birbrair A. Stem cell microenvironments and beyond. Adv Exp Med Biol 2017, 1041: 1–3.

    Article  CAS  PubMed  Google Scholar 

  83. Birbrair A, Wang ZM, Messi ML, Enikolopov GN, Delbono O. Nestin-GFP transgene reveals neural precursor cells in adult skeletal muscle. PLoS One 2011, 6: e16816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Costa MA, Paiva AE, Andreotti JP, Cardoso MV, Cardoso CD, Mintz A, et al. Pericytes constrict blood vessels after myocardial ischemia. J Mol Cell Cardiol 2018, 116: 1–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li Y, Lucas-Osma AM, Black S, Bandet MV, Stephens MJ, Vavrek R, et al. Pericytes impair capillary blood flow and motor function after chronic spinal cord injury. Nat Med 2017, 23: 733–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Almeida VM, Paiva AE, Sena IFG, Mintz A, Magno LAV, Birbrair A. Pericytes make spinal cord breathless after injury. Neuroscientist 2018, 24: 440–447.

    Article  PubMed  Google Scholar 

  87. Yamamoto S, Muramatsu M, Azuma E, Ikutani M, Nagai Y, Sagara H, et al. A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS. Sci Rep 2017, 7: 3855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yamazaki T, Nalbandian A, Uchida Y, Li W, Arnold TD, Kubota Y, et al. Tissue myeloid progenitors differentiate into pericytes through TGF-beta signaling in developing skin vasculature. Cell Rep 2017, 18: 2991–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ozen I, Deierborg T, Miharada K, Padel T, Englund E, Genove G, et al. Brain pericytes acquire a microglial phenotype after stroke. Acta Neuropathol 2014, 128: 381–396.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Paiva AE, Lousado L, Almeida VM, Andreotti JP, Santos GSP, Azevedo PO, et al. Endothelial cells as precursors for osteoblasts in the metastatic prostate cancer bone. Neoplasia 2017, 19: 928–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Paiva AE, Lousado L, Guerra DAP, Azevedo PO, Sena IFG, Andreotti JP, et al. Pericytes in the premetastatic niche. Cancer Res 2018, 78: 2779–2786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Azevedo PO, Paiva AE, Santos GSP, Lousado L, Andreotti JP, Sena IFG, et al. Cross-talk between lung cancer and bones results in neutrophils that promote tumor progression. Cancer Metastasis Rev 2018. https://doi.org/10.1007/s10555-018-9759-4.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Filosa JA, Nelson MT, Gonzalez Bosc LV. Activity-dependent NFATc3 nuclear accumulation in pericytes from cortical parenchymal microvessels. Am J Physiol Cell Physiol 2007, 293: C1797–1805.

    Article  CAS  PubMed  Google Scholar 

  94. Haskew-Layton RE, Payappilly JB, Smirnova NA, Ma TC, Chan KK, Murphy TH, et al. Controlled enzymatic production of astrocytic hydrogen peroxide protects neurons from oxidative stress via an Nrf2-independent pathway. Proc Natl Acad Sci U S A 2010, 107: 17385–17390.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Vinukonda G, Dummula K, Malik S, Hu F, Thompson CI, Csiszar A, et al. Effect of prenatal glucocorticoids on cerebral vasculature of the developing brain. Stroke 2010, 41: 1766–1773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Winkler EA, Sagare AP, Zlokovic BV. The pericyte: a forgotten cell type with important implications for Alzheimer’s disease? Brain Pathol 2014, 24: 371–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Halliday MR, Rege SV, Ma Q, Zhao Z, Miller CA, Winkler EA, et al. Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease. J Cereb Blood Flow Metab 2016, 36: 216–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Montagne A, Nikolakopoulou AM, Zhao Z, Sagare AP, Si G, Lazic D, et al. Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat Med 2018, 24: 326–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sagare AP, Bell RD, Zhao Z, Ma Q, Winkler EA, Ramanathan A, et al. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun 2013, 4: 2932.

    Article  CAS  PubMed  Google Scholar 

  100. Winkler EA, Sengillo JD, Sullivan JS, Henkel JS, Appel SH, Zlokovic BV. Blood-spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol 2013, 125: 111–120.

    Article  CAS  PubMed  Google Scholar 

  101. Coatti GC, Frangini M, Valadares MC, Gomes JP, Lima NO, Cavacana N, et al. Pericytes extend survival of ALS SOD1 mice and induce the expression of antioxidant enzymes in the murine model and in IPSCs derived neuronal cells from an ALS patient. Stem Cell Rev 2017, 13: 686–698.

    Article  CAS  Google Scholar 

  102. Geraldes P, Hiraoka-Yamamoto J, Matsumoto M, Clermont A, Leitges M, Marette A, et al. Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med 2009, 15: 1298–1306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ghosh M, Balbi M, Hellal F, Dichgans M, Lindauer U, Plesnila N. Pericytes are involved in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Ann Neurol 2015, 78: 887–900.

    Article  CAS  PubMed  Google Scholar 

  104. Marchi N, Lerner-Natoli M. Cerebrovascular remodeling and epilepsy. Neuroscientist 2013, 19: 304–312.

    Article  CAS  PubMed  Google Scholar 

  105. Niu F, Yao H, Zhang W, Sutliff RL, Buch S. Tat 101-mediated enhancement of brain pericyte migration involves platelet-derived growth factor subunit B homodimer: implications for human immunodeficiency virus-associated neurocognitive disorders. J Neurosci 2014, 34: 11812–11825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Heldin CH. Targeting the PDGF signaling pathway in tumor treatment. Cell Commun Signal 2013, 11: 97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Keller A, Westenberger A, Sobrido MJ, Garcia-Murias M, Domingo A, Sears RL, et al. Mutations in the gene encoding PDGF-B cause brain calcifications in humans and mice. Nat Genet 2013, 45: 1077–1082.

    Article  CAS  PubMed  Google Scholar 

  108. Behl Y, Krothapalli P, Desta T, Roy S, Graves DT. FOXO1 plays an important role in enhanced microvascular cell apoptosis and microvascular cell loss in type 1 and type 2 diabetic rats. Diabetes 2009, 58: 917–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Arango-Lievano M, Boussadia B, De Terdonck LDT, Gault C, Fontanaud P, Lafont C, et al. Topographic reorganization of cerebrovascular mural cells under seizure conditions. Cell Rep 2018, 23: 1045–1059.

    Article  CAS  PubMed  Google Scholar 

  110. Lowe SW, Ruley HE, Jacks T, Housman DE. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993, 74: 957–967.

    Article  CAS  PubMed  Google Scholar 

  111. Barry MA, Behnke CA, Eastman A. Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem Pharmacol 1990, 40: 2353–2362.

    Article  CAS  PubMed  Google Scholar 

  112. Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med 2006, 12: 440–450.

    Article  CAS  PubMed  Google Scholar 

  113. Hill RA, Damisah EC, Chen F, Kwan AC, Grutzendler J. Targeted two-photon chemical apoptotic ablation of defined cell types in vivo. Nat Commun 2017, 8: 15837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Saito M, Iwawaki T, Taya C, Yonekawa H, Noda M, Inui Y, et al. Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat Biotechnol 2001, 19: 746–750.

    Article  CAS  PubMed  Google Scholar 

  115. Buch T, Heppner FL, Tertilt C, Heinen TJ, Kremer M, Wunderlich FT, et al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat Methods 2005, 2: 419–426.

    Article  CAS  PubMed  Google Scholar 

  116. Mallet VO, Mitchell C, Guidotti JE, Jaffray P, Fabre M, Spencer D, et al. Conditional cell ablation by tight control of caspase-3 dimerization in transgenic mice. Nat Biotechnol 2002, 20: 1234–1239.

    Article  CAS  PubMed  Google Scholar 

  117. Fu Y, Tucciarone JM, Espinosa JS, Sheng N, Darcy DP, Nicoll RA, et al. A cortical circuit for gain control by behavioral state. Cell 2014, 156: 1139–1152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Orger MB, Kampff AR, Severi KE, Bollmann JH, Engert F. Control of visually guided behavior by distinct populations of spinal projection neurons. Nat Neurosci 2008, 11: 327–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kirby BB, Takada N, Latimer AJ, Shin J, Carney TJ, Kelsh RN, et al. In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat Neurosci 2006, 9: 1506–1511.

    Article  CAS  PubMed  Google Scholar 

  120. Rompolas P, Deschene ER, Zito G, Gonzalez DG, Saotome I, Haberman AM, et al. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 2012, 487: 496–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jay DG. Selective destruction of protein function by chromophore-assisted laser inactivation. Proc Natl Acad Sci U S A 1988, 85: 5454–5458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tour O, Meijer RM, Zacharias DA, Adams SR, Tsien RY. Genetically targeted chromophore-assisted light inactivation. Nat Biotechnol 2003, 21: 1505–1508.

    Article  CAS  PubMed  Google Scholar 

  123. Rajfur Z, Roy P, Otey C, Romer L, Jacobson K. Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nat Cell Biol 2002, 4: 286–293.

    Article  CAS  PubMed  Google Scholar 

  124. Surrey T, Elowitz MB, Wolf PE, Yang F, Nedelec F, Shokat K, et al. Chromophore-assisted light inactivation and self-organization of microtubules and motors. Proc Natl Acad Sci U S A 1998, 95: 4293–4298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bulina ME, Chudakov DM, Britanova OV, Yanushevich YG, Staroverov DB, Chepurnykh TV, et al. A genetically encoded photosensitizer. Nat Biotechnol 2006, 24: 95–99.

    Article  CAS  PubMed  Google Scholar 

  126. Qi YB, Garren EJ, Shu X, Tsien RY, Jin Y. Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG. Proc Natl Acad Sci U S A 2012, 109: 7499–7504.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lin JY, Sann SB, Zhou K, Nabavi S, Proulx CD, Malinow R, et al. Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI). Neuron 2013, 79: 241–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Huang FJ, You WK, Bonaldo P, Seyfried TN, Pasquale EB, Stallcup WB. Pericyte deficiencies lead to aberrant tumor vascularizaton in the brain of the NG2 null mouse. Dev Biol 2010, 344: 1035–1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kunz J, Krause D, Kremer M, Dermietzel R. The 140-kDa protein of blood-brain barrier-associated pericytes is identical to aminopeptidase N. J Neurochem 1994, 62: 2375–2386.

    Article  CAS  PubMed  Google Scholar 

  130. Nehls V, Drenckhahn D. The versatility of microvascular pericytes: from mesenchyme to smooth muscle? Histochemistry 1993, 99: 1–12.

    Article  CAS  PubMed  Google Scholar 

  131. Nehls V, Denzer K, Drenckhahn D. Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res 1992, 270: 469–474.

    Article  CAS  PubMed  Google Scholar 

  132. Cho H, Kozasa T, Bondjers C, Betsholtz C, Kehrl JH. Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation. FASEB J 2003, 17: 440–442.

    Article  CAS  PubMed  Google Scholar 

  133. Christian S, Winkler R, Helfrich I, Boos AM, Besemfelder E, Schadendorf D, et al. Endosialin (Tem1) is a marker of tumor-associated myofibroblasts and tumor vessel-associated mural cells. Am J Pathol 2008, 172: 486–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Maki T, Maeda M, Uemura M, Lo EK, Terasaki Y, Liang AC, et al. Potential interactions between pericytes and oligodendrocyte precursor cells in perivascular regions of cerebral white matter. Neurosci Lett 2015, 597: 164–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 2013, 502: 637–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Guerra DAP, Paiva AE, Sena IFG, Azevedo PO, Batista ML, Jr., Mintz A, et al. Adipocytes role in the bone marrow niche. Cytometry A 2018, 93:167–171.

    Article  PubMed  Google Scholar 

  137. Sena IFG, Prazeres P, Santos GSP, Borges IT, Azevedo PO, Andreotti JP, et al. Identity of Gli1+ cells in the bone marrow. Exp Hematol 2017, 54: 12–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sena IFG, Borges IT, Lousado L, Azevedo PO, Andreotti JP, Almeida VM, et al. LepR+ cells dispute hegemony with Gli1+ cells in bone marrow fibrosis. Cell Cycle 2017, 16: 1–5.

    Article  CAS  Google Scholar 

  139. Hammes HP, Lin J, Wagner P, Feng Y, Vom Hagen F, Krzizok T, et al. Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes 2004, 53: 1104–1110.

    Article  CAS  PubMed  Google Scholar 

  140. Braun A, Xu H, Hu F, Kocherlakota P, Siegel D, Chander P, et al. Paucity of pericytes in germinal matrix vasculature of premature infants. J Neurosci 2007, 27: 12012–12024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wilhelmus MM, Otte-Holler I, van Triel JJ, Veerhuis R, Maat-Schieman ML, Bu G, et al. Lipoprotein receptor-related protein-1 mediates amyloid-beta-mediated cell death of cerebrovascular cells. Am J Pathol 2007, 171: 1989–1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wisniewski HM, Wegiel J, Wang KC, Lach B. Ultrastructural studies of the cells forming amyloid in the cortical vessel wall in Alzheimer’s disease. Acta Neuropathol 1992, 84: 117–127.

    Article  CAS  PubMed  Google Scholar 

  143. Yang S, Jin H, Zhu Y, Wan Y, Opoku EN, Zhu L, et al. Diverse functions and mechanisms of pericytes in ischemic stroke. Curr Neuropharmacol 2017, 15: 892–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Fernandez-Klett F, Potas JR, Hilpert D, Blazej K, Radke J, Huck J, et al. Early loss of pericytes and perivascular stromal cell-induced scar formation after stroke. J Cereb Blood Flow Metab 2013, 33: 428–439.

    Article  CAS  PubMed  Google Scholar 

  145. Zehendner CM, Sebastiani A, Hugonnet A, Bischoff F, Luhmann HJ, Thal SC. Traumatic brain injury results in rapid pericyte loss followed by reactive pericytosis in the cerebral cortex. Sci Rep 2015, 5: 13497.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Milesi S, Boussadia B, Plaud C, Catteau M, Rousset MC, De Bock F, et al. Redistribution of PDGFRbeta cells and NG2DsRed pericytes at the cerebrovasculature after status epilepticus. Neurobiol Dis 2014, 71: 151–158.

    Article  CAS  PubMed  Google Scholar 

  147. Klement W, Garbelli R, Zub E, Rossini L, Tassi L, Girard B, et al. Seizure progression and inflammatory mediators promote pericytosis and pericyte-microglia clustering at the cerebrovasculature. Neurobiol Dis 2018, 113: 70–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A. Birbrair was supported by Grants from Instituto Serrapilheira/Serra-1708-15285, Pró-reitoria de Pesquisa/Universidade Federal de Minas Gerais (PRPq/UFMG) (Edital 05/2016), the National Institute of Science and Technology in Theranostics and Nanobiotechnology (CNPq/CAPES/FAPEMIG, Process No. 465669/2014-0), FAPEMIG [Rede Mineira de Engenharia de Tecidos e Terapia Celular (REMETTEC, RED-00570-16)], and FAPEMIG [Rede De Pesquisa Em Doenças Infecciosas Humanas E Animais Do Estado De Minas Gerais (RED-00313-16)]. Akiva Mintz was supported by the National Institute of Health (1R01CA179072-01A1) and an American Cancer Society Mentored Research Scholar Grant (124443-MRSG-13-121-01-CDD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Birbrair.

Ethics declarations

Conflict of interest

The authors indicate no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, G.S.P., Magno, L.A.V., Romano-Silva, M.A. et al. Pericyte Plasticity in the Brain. Neurosci. Bull. 35, 551–560 (2019). https://doi.org/10.1007/s12264-018-0296-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-018-0296-5

Keywords

Navigation