Skip to main content

Kinetic Modeling of Radiotracers

  • Chapter
  • First Online:
Radiopharmaceutical Chemistry

Abstract

Positron emission tomography (PET) is a powerful tool for the noninvasive measurement of biological parameters. Because of its inherently quantitative nature, PET can be used to measure radioactivity concentrations in the blood and various tissues over time. Using the proper tracer and tracer kinetic model, this information can be used to determine parameters such as blood flow, receptor availability, and substrate metabolism. In this chapter, we will first discuss the basic concept of quantitative PET measurements. Then, we will describe compartment models for blood flow, irreversible kinetics, and receptor-ligand kinetics in more detail. The use of these compartment models for the computation of voxel-wise maps of functional parameters requires the linearization of the compartment models, which is addressed in the context of both irreversible and reversible models. Finally, further simplifications that do not require dynamic scanning are briefly described. Although this chapter is by no means exhaustive, it aims to provide an introduction to the use of tracer kinetic models to derive functional parameters from PET data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lammertsma AA. Forward to the Past: The case for quantitative PET imaging. J Nucl Med. 2017;58(7):1019–24.

    Article  CAS  Google Scholar 

  2. Jonasson M, Wall A, Chiotis K, Saint-Aubert L, Wilking H, Sprycha M, et al. Tracer kinetic analysis of (S)-18F-THK5117 as a PET tracer for assessing tau pathology. J Nucl Med. 2016;57:574.

    Article  CAS  Google Scholar 

  3. Kety SS. The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev. 1951;3(1):1–41.

    CAS  PubMed  Google Scholar 

  4. Kety SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest. 1948;27(4):476–83.

    Article  CAS  Google Scholar 

  5. Lammertsma AA, Bench CJ, Hume SP, Osman S, Gunn K, Brooks DJ, et al. Comparison of methods for analysis of clinical [C-11]raclopride studies. J Cereb Blood Flow Metab. 1996;16(1):42–52.

    Article  CAS  Google Scholar 

  6. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. NeuroImage. 1996;4(3Pt 1):153–8.

    Article  CAS  Google Scholar 

  7. Wu Y, Carson RE. Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging. J Cereb Blood Flow Metab. 2002;22(12):1440–52.

    Article  Google Scholar 

  8. Gjedde A. High- and low-affinity transport of D-glucose from blood to brain. J Neurochem. 1981;36(4):1463–71.

    Article  CAS  Google Scholar 

  9. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3(1):1–7.

    Article  CAS  Google Scholar 

  10. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N- 11 C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. 1990;10(5):740–7.

    Article  CAS  Google Scholar 

  11. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab. 1996;16(5):834–40.

    Article  CAS  Google Scholar 

  12. Watabe H, Jino H, Kawachi N, Teramoto N, Hayashi T, Ohta Y, et al. Parametric imaging of myocardial blood flow with 15O-water and PET using the basis function method. J Nucl Med. 2005;46(7):1219–24.

    PubMed  Google Scholar 

  13. Boellaard R, Knaapen P, Rijbroek A, Luurtsema GJ, Lammertsma AA. Evaluation of basis function and linear least squares methods for generating parametric blood flow images using 15O-water and positron emission tomography. Mol Imaging Biol. 2005;7(4):273–85.

    Article  Google Scholar 

  14. Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. NeuroImage. 1997;6(4):279–87.

    Article  CAS  Google Scholar 

  15. Hoekstra CJ, Hoekstra OS, Stroobants SG, Vansteenkiste J, Nuyts J, Smit EF, et al. Methods to monitor response to chemotherapy in non-small cell lung cancer with 18F-FDG PET. J Nucl Med. 2002;43(10):1304–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Lubberink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lubberink, M., Heurling, K. (2019). Kinetic Modeling of Radiotracers. In: Lewis, J., Windhorst, A., Zeglis, B. (eds) Radiopharmaceutical Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-98947-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98947-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98946-4

  • Online ISBN: 978-3-319-98947-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics