Skip to main content

Advertisement

Log in

TRASCET—Transamniotic Stem Cell Therapy

  • REVIEW
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This is an overview of the current state of development of transamniotic stem cell therapy (TRASCET) as an emerging therapeutic paradigm for the treatment of many congenital anomalies based on the augmentation of the biological role of select populations of stem cells that occur in the amniotic fluid.

Recent Findings

Mesenchymal, hematopoietic, and neural stem cells are or can be present in the amniotic fluid and have all been proven experimentally to be viable agents of TRASCET for different fetal and placental diseases. Various applications of this therapeutic concept are conceivable or currently under investigation, with experimental evidence of its efficacy already having been reported so far for the management of intrauterine growth restriction, gastroschisis, spina bifida, congenital diaphragmatic hernia, and select inherited metabolic disorders, including TRASCET-based gene therapy. As of this writing, TRASCET has yet to be reported clinically, though the first patient may be imminent.

Summary

TRASCET is arguably the least invasive form of fetal stem cell therapy. The practicality of a fetal intervention amenable to be performed as an outpatient procedure should render TRASCET easily accessible to a sizeable proportion, if not the majority of pregnant women, and from a fairly early point in gestation, thus maximizing its potential impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Dionigi B, Ahmed A, Brazzo J 3rd, Connors JP, Zurakowski D, Fauza DO. Partial or complete coverage of experimental spina bifida by simple intra-amniotic injection of concentrated amniotic mesenchymal stem cells. J Pediatr Surg. 2015;50(1):69–73. https://doi.org/10.1016/j.jpedsurg.2014.10.004. Epub 2015/01/20; PubMed PMID: 25598096.

    Article  PubMed  Google Scholar 

  2. Fauza DO. Transamniotic stem cell therapy: a novel strategy for the prenatal management of congenital anomalies. Pediatr Res. 2018;83(1–2):241–8. https://doi.org/10.1038/pr.2017.228. Epub 2017/09/16; PubMed PMID: 28915235.

    Article  CAS  PubMed  Google Scholar 

  3. Turner CG, Pennington EC, Gray FL, Ahmed A, Teng YD, Fauza DO. Intra-amniotic delivery of amniotic-derived neural stem cells in a syngeneic model of spina bifida. Fetal Diagn Ther. 2013;34(1):38–43. https://doi.org/10.1159/000350267. Epub 2013/05/03; PubMed PMID: 23635813.

    Article  PubMed  Google Scholar 

  4. Lee DH, Kim EY, Park S, Phi JH, Kim SK, Cho BK, Lim J, Wang KC. Reclosure of surgically induced spinal open neural tube defects by the intraamniotic injection of human embryonic stem cells in chick embryos 24 hours after lesion induction. J Neurosurg. 2006;105(2 Suppl):127–33. https://doi.org/10.3171/ped.2006.105.2.127. Epub 2006/08/23; PubMed PMID: 16922074.

    Article  PubMed  Google Scholar 

  5. Lee DH, Park S, Kim EY, Kim SK, Chung YN, Cho BK, Lee YJ, Lim J, Wang KC. Enhancement of re-closure capacity by the intra-amniotic injection of human embryonic stem cells in surgically induced spinal open neural tube defects in chick embryos. Neurosci Lett. 2004;364(2):98–100. https://doi.org/10.1016/j.neulet.2004.04.033S0304394004004719. Epub 2004/06/16; PubMed PMID: 15196686.

    Article  CAS  PubMed  Google Scholar 

  6. Lee DH, Phi JH, Kim SK, Cho BK, Kim SU, Wang KC. Enhanced reclosure of surgically induced spinal open neural tube defects in chick embryos by injecting human bone marrow stem cells into the amniotic cavity. Neurosurgery. 2010;67(1):129–35. https://doi.org/10.1227/01.NEU.0000371048.76494.0F00006123-201007000-00018. Discussion 35. Epub 2010/06/19; PubMed PMID: 20559100.

    Article  PubMed  Google Scholar 

  7. Moreno R, Martinez-Gonzalez I, Rosal M, Nadal M, Petriz J, Gratacos E, Aran JM. Fetal liver-derived mesenchymal stem cell engraftment after allogeneic in utero transplantation into rabbits. Stem Cells Dev. 2012;21(2):284–95. https://doi.org/10.1089/scd.2010.0483. Epub 20110601; PubMed PMID: 21495909; PMCID: PMC3258433.

    Article  CAS  PubMed  Google Scholar 

  8. Klein JD, Turner CG, Steigman SA, Ahmed A, Zurakowski D, Eriksson E, Fauza DO. Amniotic mesenchymal stem cells enhance normal fetal wound healing. Stem Cells Dev. 2011;20(6):969–76. https://doi.org/10.1089/scd.2010.0379. Epub; 2010/10/29; PubMed PMID: 20979452.

    Article  CAS  PubMed  Google Scholar 

  9. Naus AEMK, Whitlock AE, Kycia I, Dang TT, Lin SB, Maskey R, Zurakowski D, Matthieu R, Fauza DO, editors. Consumption of native amniotic fluid mesenchymal stem cells in a model of intrauterine growth restriction (IUGR): further biological basis for transamniotic stem cell therapy (TRASCET) as a potential novel treatment for this disease. Washington, D. C.: American Academy of Pediatrics: Section on Surgery of the American Academy of Pediatrics Annual Conference; 2023 10/21/2023; 2023.

  10. Pennington EC, Gray FL, Ahmed A, Zurakowski D, Fauza DO. Targeted quantitative amniotic cell profiling: a potential diagnostic tool in the prenatal management of neural tube defects. J Pediatr Surg. 2013;48(6):1205–10. https://doi.org/10.1016/j.jpedsurg.2013.03.009. Epub; 2013/07/13; PubMed PMID: 23845608.

    Article  PubMed  Google Scholar 

  11. Pennington EC, Rialon KL, Dionigi B, Ahmed A, Zurakowski D, Fauza DO. The impact of gestational age on targeted amniotic cell profiling in experimental neural tube defects. Fetal Diagn Ther. 2015;37(1):65–9. https://doi.org/10.1159/000362811. Epub 2014/08/30; PubMed PMID: 25171576.

    Article  PubMed  Google Scholar 

  12. Fauza D. Amniotic fluid and placental stem cells. Best Pract Res Clin Obstet Gynaecol. 2004;18(6):877–91. https://doi.org/10.1016/j.bpobgyn.2004.07.001. Epub 2004/12/08; PubMed PMID: 15582544.

    Article  PubMed  Google Scholar 

  13. Turner CG, Klein JD, Wang J, Thakor D, Benedict D, Ahmed A, Teng YD, Fauza DO. The amniotic fluid as a source of neural stem cells in the setting of experimental neural tube defects. Stem Cells Dev. 2013;22(4):548–53. https://doi.org/10.1089/scd.2012.0215. Epub 2012/09/11; PubMed PMID: 22957979.

    Article  CAS  PubMed  Google Scholar 

  14. Gosden CM. Amniotic fluid cell types and culture. Br Med Bull. 1983;39(4):348–54. Epub 1983/10/01; PubMed PMID: 6357346.

    Article  CAS  PubMed  Google Scholar 

  15. Hoehn H, Salk D. Morphological and biochemical heterogeneity of amniotic fluid cells in culture. Methods Cell Biol. 1982;26:11–34. Epub 1982/01/01; PubMed PMID: 6752650.

    Article  CAS  PubMed  Google Scholar 

  16. Moskowitzova K, Fauza DO. Transamniotic stem cell therapy (TRASCET): an emerging minimally invasive strategy for intrauterine stem cell delivery. Semin Perinatol. 2023;47(3):151728. https://doi.org/10.1016/j.semperi.2023.151728. Epub 20230314; PubMed PMID: 36990923.

    Article  PubMed  Google Scholar 

  17. Chalphin AV, Tracy SA, Lazow SP, Kycia I, Zurakowski D, Fauza DO. A comparison between placental and amniotic mesenchymal stem cells in transamniotic stem cell therapy for experimental gastroschisis. J Pediatr Surg. 2020;55(1):49–53. https://doi.org/10.1016/j.jpedsurg.2019.09.049. Epub 2019/11/13; PubMed PMID: 31711742.

    Article  PubMed  Google Scholar 

  18. Dionigi B, Brazzo JA 3rd, Ahmed A, Feng C, Wu Y, Zurakowski D, Fauza DO. Trans-amniotic stem cell therapy (TRASCET) minimizes Chiari-II malformation in experimental spina bifida. J Pediatr Surg. 2015;50(6):1037–41. https://doi.org/10.1016/j.jpedsurg.2015.03.034. Epub 2015/05/02; PubMed PMID: 25929798.

    Article  PubMed  Google Scholar 

  19. Feng C, Graham D, Connors JP, Brazzo J 3rd, Zurakowski D, Fauza DO. A comparison between placental and amniotic mesenchymal stem cells for transamniotic stem cell therapy (TRASCET) in experimental spina bifida. J Pediatr Surg. 2016;51(6):1010–3. https://doi.org/10.1016/j.jpedsurg.2016.02.071. Epub 2016/03/26; PubMed PMID: 27013425.

    Article  PubMed  Google Scholar 

  20. Feng C, Graham CD, Connors JP, Brazzo J 3rd, Pan AH, Hamilton JR, Zurakowski D, Fauza DO. Transamniotic stem cell therapy (TRASCET) mitigates bowel damage in a model of gastroschisis. J Pediatr Surg. 2016;51(1):56–61. https://doi.org/10.1016/j.jpedsurg.2015.10.011. Epub 2015/11/10; PubMed PMID: 26548631.

    Article  PubMed  Google Scholar 

  21. Feng C, Graham CD, Shieh HF, Brazzo JA 3rd, Connors JP, Rohrer L, Papadakis A, Zurakowski D, Fauza DO. Transamniotic stem cell therapy (TRASCET) in a leporine model of gastroschisis. J Pediatr Surg. 2017;52(1):30–4. https://doi.org/10.1016/j.jpedsurg.2016.10.016. Epub 2016/11/12; PubMed PMID: 27836365.

    Article  PubMed  Google Scholar 

  22. Shieh HF, Tracy SA, Hong CR, Chalphin AV, Ahmed A, Rohrer L, Zurakowski D, Fauza DO. Transamniotic stem cell therapy (TRASCET) in a rabbit model of spina bifida. J Pediatr Surg. 2019;54(2):293–6. https://doi.org/10.1016/j.jpedsurg.2018.10.086. Epub 2018/12/07; PubMed PMID: 30518492.

    Article  PubMed  Google Scholar 

  23. Chalphin AV, Tracy SA, Kycia I, Chan C, Finkelstein A, Zurakowski D, Fauza DO. Donor mesenchymal stem cell kinetics after transamniotic stem cell therapy (TRASCET) in a rodent model of gastroschisis. J Pediatr Surg. 2020;55(3):482–5. Epub 20191128. https://doi.org/10.1016/j.jpedsurg.2019.11.005. PubMed PMID: 31813581

  24. Lazow SP, Kycia I, Labuz DF, Zurakowski D, Fauza DO. Fetal hematogenous routing of a donor hematopoietic stem cell line in a healthy syngeneic model of transamniotic stem cell therapy. J Pediatr Surg. 2021;56(6):1233–6. https://doi.org/10.1016/j.jpedsurg.2021.02.035. Epub 2021/03/28; PubMed PMID: 33771370.

    Article  PubMed  Google Scholar 

  25. Lazow SP, Tracy SA, Chalphin AV, Kycia I, Zurakowski D, Fauza DO. Initial mechanistic screening of transamniotic stem cell therapy in the rodent model of spina bifida: host bone marrow and paracrine activity. Fetal Diagn Ther. 2020;47(12):902–11. Epub 20200902. https://doi.org/10.1159/000509244. PubMed PMID: 32877907.

  26. Shieh HF, Ahmed A, Rohrer L, Zurakowski D, Fauza DO. Donor mesenchymal stem cell linetics after transamniotic stem cell therapy (TRASCET) for experimental spina bifida. J Pediatr Surg. 2018;53(6):1134–6. https://doi.org/10.1016/j.jpedsurg.2018.02.067. Epub 2018/03/28; PubMed PMID: 29580785.

    Article  PubMed  Google Scholar 

  27. Shieh HF, Ahmed A, Tracy SA, Zurakowski D, Fauza DO. Fetal bone marrow homing of donor mesenchymal stem cells after transamniotic stem cell therapy (TRASCET). J Pediatr Surg. 2018;53(1):174–7. Epub 20171012. https://doi.org/10.1016/j.jpedsurg.2017.10.033. PubMed PMID: 29132800.

  28. • Tracy SA, Chalphin AV, Kycia I, Chan C, Finkelstein A, Zurakowski D, Fauza DO. Hematogenous donor cell routing pathway after transamniotic stem cell therapy. Stem Cells Dev. 2020;29(12):755–60. https://doi.org/10.1089/scd.2020.0012. Epub 2020/04/02; PubMed PMID: 32228172. This study describes how mesenchymal stem cells injected in the amniotic fluid can reach the fetal circulation. Such a routing is fundamental to TRASCET's effects.

    Article  CAS  PubMed  Google Scholar 

  29. • Labuz DF, Whitlock AE, Kycia I, Zurakowski D, Fauza DO. Routing pathway of syngeneic donor hematopoietic stem cells after simple intra-amniotic delivery. J Pediatr Surg. 2022;57(6):986–90. https://doi.org/10.1016/j.jpedsurg.2022.01.067. Epub 2022/03/14; PubMed PMID: 35279287. This study describes how hematopoietic stem cells injected in the amniotic fluid can reach the fetal circulation. Such a routing is fundamental to TRASCET's effects.

    Article  PubMed  Google Scholar 

  30. Chalphin AV, Lazow SP, Labuz DF, Tracy SA, Kycia I, Zurakowski D, Fauza DO. Transamniotic stem cell therapy for experimental congenital diaphragmatic hernia: structural, transcriptional, and cell kinetics analyses in the nitrofen model. Fetal Diagn Ther. 2021;48(5):381–91. Epub 20210414. https://doi.org/10.1159/000515277. PubMed PMID: 33853064.

  31. Graham CD, Shieh HF, Brazzo JA 3rd, Zurakowski D, Fauza DO. Donor mesenchymal stem cells home to maternal wounds after transamniotic stem cell therapy (TRASCET) in a rodent model. J Pediatr Surg. 2017;52(6):1006–9. https://doi.org/10.1016/j.jpedsurg.2017.03.027. Epub 2017/04/02; PubMed PMID: 28363468.

    Article  PubMed  Google Scholar 

  32. Moskowitzova K, Whitlock AE, Kycia I, Zurakowski D, Fauza DO. Bidirectional feto-maternal traffic of donor mesenchymal stem cells following transamniotic stem cell therapy (TRASCET). J Pediatr Surg. 2024;59(2):290–4. Epub 20231017. https://doi.org/10.1016/j.jpedsurg.2023.10.009. PubMed PMID: 37945511.

  33. Moskowitzova KWAE, Kycia I, Zurakowski D, Fauza DO, editors. Postnatal fate of donor hematopoietic stem cells after transamniotic stem cell therapy (TRASCET) in a healthy syngeneic model. Orlando, FL: American Pediatric Surgical Association: American Pediatric Surgery Association 2023 Annual Meeting; 05/12/2023; 2023.

  34. Tracy SA, Chalphin AV, Lazow SP, Kycia I, Finkelstein A, Chan C, Zurakowski D, Fauza DO. Postnatal fate of donor mesenchymal stem cells after transamniotic stem cell therapy in a healthy model. J Pediatr Surg. 2020;55(6):1113–6. Epub 20200226. https://doi.org/10.1016/j.jpedsurg.2020.02.041. PubMed PMID: 32164983.

  35. Chang YJ, Su HL, Hsu LF, Huang PJ, Wang TH, Cheng FC, Hsu LW, Tsai MS, Chen CP, Chang YL, Chao AS, Hwang SM. Isolation of human neural stem cells from the amniotic fluid with diagnosed neural tube defects. Stem Cells Dev. 2015;24(15):1740–50. https://doi.org/10.1089/scd.2014.0516. Epub 2015/04/30; PubMed PMID: 25923707; PMCID: 4507310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Biron-Shental T, Sadeh-Mestechkin D, Amiel A. Telomere homeostasis in IUGR placentas - a review. Placenta. 2016;39:21–3. https://doi.org/10.1016/j.placenta.2015.11.006. Epub 2016/03/20; PubMed PMID: 26992670.

    Article  CAS  PubMed  Google Scholar 

  37. Krishna RG, Vishnu Bhat B, Bobby Z, Papa D, Badhe B, Kalidoss VK, Karli S. Identification of differentially methylated candidate genes and their biological significance in IUGR neonates by methylation EPIC array. J Mater-Fetal Neonatal Med: The Official Journal of the European Association of Perinatal Medicine, The Federation of Asia and Oceania Perinatal Societies, The International Society of Perinatal Obstet. 2022;35(3):525–33. https://doi.org/10.1080/14767058.2020.1727881. Epub 2020/02/25; PubMed PMID: 32091279.

    Article  CAS  Google Scholar 

  38. Mai CT, Isenburg JL, Canfield MA, Meyer RE, Correa A, Alverson CJ, Lupo PJ, Riehle-Colarusso T, Cho SJ, Aggarwal D, Kirby RS. National population-based estimates for major birth defects, 2010–2014. Birth Defects Res. 2019;111(18):1420–35. https://doi.org/10.1002/bdr2.1589. Epub 2019/10/04; PubMed PMID: 31580536; PMCID: 7203968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Balayla J, Desilets J, Shrem G. Placenta previa and the risk of intrauterine growth restriction (IUGR): a systematic review and meta-analysis. J Perinat Med. 2019;47(6):577–84. https://doi.org/10.1515/jpm-2019-0116. Epub 2019/07/14; PubMed PMID: 31301678.

    Article  PubMed  Google Scholar 

  40. Malhotra A, Allison BJ, Castillo-Melendez M, Jenkin G, Polglase GR, Miller SL. Neonatal morbidities of fetal growth restriction: pathophysiology and impact. Front Endocrinol. 2019;10:55. https://doi.org/10.3389/fendo.2019.00055. Epub 2019/02/23; PubMed PMID: 30792696; PMCID: 6374308.

    Article  Google Scholar 

  41. Swanson AM, David AL. Animal models of fetal growth restriction: considerations for translational medicine. Placenta. 2015;36(6):623–30. https://doi.org/10.1016/j.placenta.2015.03.003. Epub 2015/03/31; PubMed PMID: 25819810.

    Article  CAS  PubMed  Google Scholar 

  42. Elfarra J, Amaral LM, McCalmon M, Scott JD, Cunningham MW Jr, Gnam A, Ibrahim T, LaMarca B, Cornelius DC. Natural killer cells mediate pathophysiology in response to reduced uterine perfusion pressure. Clin Sci (Lond). 2017;131(23):2753–62. https://doi.org/10.1042/CS20171118. Epub 2017/10/19; PubMed PMID: 29042488; PMCID: 5864106.

    Article  CAS  PubMed  Google Scholar 

  43. Travis OK, Baik C, Tardo GA, Amaral L, Jackson C, Greer M, Giachelli C, Ibrahim T, Herrock OT, Williams JM, Cornelius DC. Adoptive transfer of placental ischemia-stimulated natural killer cells causes a preeclampsia-like phenotype in pregnant rats. Am J Reprod Immunol. 2021;85(6):e13386 Epub 2020/12/15; PubMed PMID: 33315281; PMCID: 8131208. https://doi.org/10.1111/aji.13386.

    Article  CAS  PubMed  Google Scholar 

  44. Labuz DF, Whitlock AE, Kycia I, Zurakowski D, Fauza DO. Intrauterine Growth Restriction (IUGR) as a potential target for transamniotic stem cell therapy. J Pediatr Surg. 2022;57(6):999–1003. https://doi.org/10.1016/j.jpedsurg.2022.01.062. Epub 2022/03/13; PubMed PMID: 35277250.

    Article  PubMed  Google Scholar 

  45. Moskowitzova K, Kycia I, Dang TT, Shroff Y, Bletsas E, Mullin K, Zurakowski D, Matthieu R, Fauza DO, editors. Comparative effects on fetal hematopoiesis and placental inflammation from mesenchymal and hematopoietic stem cells as agents of transamniotic stem cell therapy (TRASCET) in a syngeneic model of intrauterine growth restriction. J Pediatr Surg (in press).

  46. Whitlock AE, Moskowitzova K, Kycia I, Zurakowski D, Fauza DO, editors. Morphometric, developmental, and anti-inflammatory effects of transamniotic stem cell therapy (TRASCET) on the fetal heart and lungs in a model of intrauterine growth restriction. Stem Cells Dev. 2023;32(15-16):484–90. https://doi.org/10.1089/scd.2023.0040. PubMed PMID: 37358376.

  47. Whitlock AE, Moskowitzova K, Kycia I, Zurakowski D, Fauza DO, editors. Transamniotic stem cell therapy (TRASCET) modulates uterine natural killer cell activity in a model of intrauterine growth restriction (IUGR). Orlando, FL: American Pediatric Surgery Association 2023 Annual Meeting; 05/12/2023; 2023.

  48. Whitlock AE, Moskowitzova K, Kycia I, Zurakowski D, Fauza DO. Transamniotic stem cell therapy (TRASCET) for intrauterine growth restriction (IUGR): a comparison between placental and amniotic fluid donor mesenchymal stem cells. J Pediatr Surg. 2023;58(2):305–9. https://doi.org/10.1016/j.jpedsurg.2022.10.021. Epub 20221021; PubMed PMID: 36372622.

    Article  PubMed  Google Scholar 

  49. Whitlock AE, Moskowitzova K, Labuz DF, Kycia I, Zurakowski D, Fauza DO. Brain protection by transamniotic stem cell therapy (TRASCET) in a model of intrauterine growth restriction (IUGR). J Pediatr Surg. 2023;58(1):3–7. https://doi.org/10.1016/j.jpedsurg.2022.09.018. Epub 20221017; PubMed PMID: 36344286.

    Article  PubMed  Google Scholar 

  50. Philipp D, Suhr L, Wahlers T, Choi YH, Paunel-Gorgulu A. Preconditioning of bone marrow-derived mesenchymal stem cells highly strengthens their potential to promote IL-6-dependent M2b polarization. Stem Cell Res Ther. 2018;9(1):286. https://doi.org/10.1186/s13287-018-1039-2. Epub 2018/10/26; PubMed PMID: 30359316; PMCID: 6202843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008;2(2):141–50. https://doi.org/10.1016/j.stem.2007.11.014. Epub 2008/03/29; PubMed PMID: 18371435.

    Article  CAS  PubMed  Google Scholar 

  52. Jones AM, Isenburg J, Salemi JL, Arnold KE, Mai CT, Aggarwal D, Arias W, Carrino GE, Ferrell E, Folorunso O, Ibe B, Kirby RS, Krapfl HR, Marengo LK, Mosley BS, Nance AE, Romitti PA, Spadafino J, Stock J, Honein MA. Increasing Prevalence of Gastroschisis - 14 States, 1995–2012. MMWR Morb Mortal Wkly Rep. 2016;65(2):23–6. https://doi.org/10.15585/mmwr.mm6502a2. Epub 2016/01/23; PubMed PMID: 26796490.

    Article  PubMed  Google Scholar 

  53. Langer JC, Longaker MT, Crombleholme TM, Bond SJ, Finkbeiner WE, Rudolph CA, Verrier ED, Harrison MR. Etiology of intestinal damage in gastroschisis. I: Effects of amniotic fluid exposure and bowel constriction in a fetal lamb model. J Pediatr Surg. 1989;24(10):992–7 Epub 1989/10/01; PubMed PMID: 2530329.

    Article  CAS  PubMed  Google Scholar 

  54. Logghe HL, Mason GC, Thornton JG, Stringer MD. A randomized controlled trial of elective preterm delivery of fetuses with gastroschisis. J Pediatr Surg. 2005;40(11):1726–31. https://doi.org/10.1016/j.jpedsurg.2005.07.047. Epub 2005/11/18; PubMed PMID: 16291160.

    Article  PubMed  Google Scholar 

  55. Luton D, de Lagausie P, Guibourdenche J, Oury J, Sibony O, Vuillard E, Boissinot C, Aigrain Y, Beaufils F, Navarro J, Blot P. Effect of amnioinfusion on the outcome of prenatally diagnosed gastroschisis. Fetal Diagn Ther. 1999;14(3):152–5 Epub 1999/06/12. 20910; PubMed PMID: 10364666.

    Article  CAS  PubMed  Google Scholar 

  56. Bittencourt DG, Barreto MW, Franca WM, Goncalves A, Pereira LA, Sbragia L. Impact of corticosteroid on intestinal injury in a gastroschisis rat model: morphometric analysis. J Pediatr Surg. 2006;41(3):547–53. https://doi.org/10.1016/j.jpedsurg.2005.11.050. Epub 2006/03/07; PubMed PMID: 16516633.

    Article  PubMed  Google Scholar 

  57. Goncalves FL, Bueno MP, Schmidt AF, Figueira RL, Sbragia L. Treatment of bowel in experimental gastroschisis with a nitric oxide donor. Am J Obstet Gynecol. 2015;212(3):383–e1-7. https://doi.org/10.1016/j.ajog.2014.09.025. Epub 2014/09/30; PubMed PMID: 25263733.

    Article  CAS  Google Scholar 

  58. Hakguder G, Ates O, Olguner M, Api A, Ozdogan O, Degirmenci B, Akgur FM. Induction of fetal diuresis with intraamniotic furosemide increases the clearance of intraamniotic substances: an alternative therapy aimed at reducing intraamniotic meconium concentration. J Pediatr Surg. 2002;37(9):1337–42. Epub 2002/08/24; PubMed PMID: 12194128.

    Article  PubMed  Google Scholar 

  59. Till H, Muensterer O, Mueller M, Klis V, Klotz S, Metzger R, Joppich I. Intrauterine repair of gastroschisis in fetal rabbits. Fetal Diagn Ther. 2003;18(5):297–300. Epub 2003/08/13. 71969; PubMed PMID: 12913337.

    Article  CAS  PubMed  Google Scholar 

  60. Yu J, Gonzalez-Reyes S, Diez-Pardo JA, Tovar JA. Effects of prenatal dexamethasone on the intestine of rats with gastroschisis. J Pediatr Surg. 2003;38(7):1032–5. Epub 2003/07/16; PubMed PMID: 12861532.

    Article  PubMed  Google Scholar 

  61. Adzick NS, Thom EA, Spong CY, Brock JW 3rd, Burrows PK, Johnson MP, Howell LJ, Farrell JA, Dabrowiak ME, Sutton LN, Gupta N, Tulipan NB, D’Alton ME, Farmer DL. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364(11):993–1004. https://doi.org/10.1056/NEJMoa1014379. Epub 2011/02/11; PubMed PMID: 21306277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Danzer E, Schwarz U, Wehrli S, Radu A, Adzick NS, Flake AW. Retinoic acid induced myelomeningocele in fetal rats: characterization by histopathological analysis and magnetic resonance imaging. Exp Neurol. 2005;194(2):467–75. https://doi.org/10.1016/j.expneurol.2005.03.011. Epub 2005/05/17. S0014–4886(05)00107-X; PubMed PMID: 15893307.

    Article  CAS  PubMed  Google Scholar 

  63. Abe Y, Ochiai D, Masuda H, Sato Y, Otani T, Fukutake M, Ikenoue S, Miyakoshi K, Okano H, Tanaka M. In utero amniotic fluid stem cell therapy protects against myelomeningocele via spinal cord coverage and hepatocyte growth factor secretion. Stem Cells Transl Med. 2019;8(11):1170–9. https://doi.org/10.1002/sctm.19-0002. Epub 2019/08/14; PubMed PMID: 31407874; PMCID: 6811697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wei X, Ma W, Gu H, Liu D, Luo W, Bai Y, Wang W, Lui VCH, Yang P, Yuan Z. Transamniotic mesenchymal stem cell therapy for neural tube defects preserves neural function through lesion-specific engraftment and regeneration. Cell Death Dis. 2020;11(7):523. https://doi.org/10.1038/s41419-020-2734-3. Epub 2020/07/14; PubMed PMID: 32655141; PMCID: 7354991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lazow SP, Labuz DF, Kycia I, Zurakowski D, Fauza DO. Enhancement of transamniotic stem cell therapy for spina bifida by genetic engineering of donor mesenchymal stem cells with an Fgf2 transgene. J Pediatr Surg. 2021;56(6):1226–32. https://doi.org/10.1016/j.jpedsurg.2021.02.036. Epub 2021/03/28; PubMed PMID: 33771369.

    Article  PubMed  Google Scholar 

  66. Lazow SP, Kycia I, Tracy SA, Zurakowski D, Fauza DO. Unselected CD117 expression in amniotic and placental mesenchymal stem cells. J Pediatr Surg. 2021;56(12):2410–1. https://doi.org/10.1016/j.jpedsurg.2021.07.022. Epub 2021/08/30; PubMed PMID: 34454720.

    Article  PubMed  Google Scholar 

  67. Chalphin AV, Tracy SA, Lazow SP, Kycia I, Zurakowski D, Fauza DO. Congenital diaphragmatic hernia as a potential target for transamniotic stem cell therapy. J Pediatr Surg. 2020;55(2):249–52. https://doi.org/10.1016/j.jpedsurg.2019.10.033. Epub 2019/11/23; PubMed PMID: 31753611.

    Article  PubMed  Google Scholar 

  68. de Mendonca L, Felix NS, Blanco NG, Da Silva JS, Ferreira TP, Abreu SC, Cruz FF, Rocha N, Silva PM, Martins V, Capelozzi VL, Zapata-Sudo G, Rocco PRM, Silva PL. Mesenchymal stromal cell therapy reduces lung inflammation and vascular remodeling and improves hemodynamics in experimental pulmonary arterial hypertension. Stem Cell Res Ther. 2017;8(1):220. https://doi.org/10.1186/s13287-017-0669-0. Epub 2017/10/05; PubMed PMID: 28974252; PMCID: 5627397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gosemann JH, Friedmacher F, Hofmann A, Zimmer J, Kuebler JF, Rittinghausen S, Suttkus A, Lacher M, Alvarez L, Corcionivoschi N, Puri P. Prenatal treatment with rosiglitazone attenuates vascular remodeling and pulmonary monocyte influx in experimental congenital diaphragmatic hernia. PloS ONE. 2018;13(11):e0206975. https://doi.org/10.1371/journal.pone.0206975. Epub 2018/11/13; PubMed PMID: 30418988; PMCID: 6231640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tobal R, Potjewijd J, van Empel VPM, Ysermans R, Schurgers LJ, Reutelingsperger CP, Damoiseaux J, van Paassen P. Vascular remodeling in pulmonary arterial hypertension: the potential involvement of innate and adaptive immunity. Front Med. 2021;8:806899. https://doi.org/10.3389/fmed.2021.806899. Epub 2022/01/11; PubMed PMID: 35004784; PMCID: 8727487.

    Article  Google Scholar 

  71. Takayama S, Sakai K, Fumino S, Furukawa T, Kishida T, Mazda O, Tajiri T. An intra-amniotic injection of mesenchymal stem cells promotes lung maturity in a rat congenital diaphragmatic hernia model. Pediatr Surg Int. 2019;35(12):1353–61. https://doi.org/10.1007/s00383-019-04561-7. Epub 2019/09/29; PubMed PMID: 31559457.

    Article  PubMed  Google Scholar 

  72. Bartolucci J, Verdugo FJ, Gonzalez PL, Larrea RE, Abarzua E, Goset C, Rojo P, Palma I, Lamich R, Pedreros PA, Valdivia G, Lopez VM, Nazzal C, Alcayaga-Miranda F, Cuenca J, Brobeck MJ, Patel AN, Figueroa FE, Khoury M. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: a phase 1/2 randomized controlled trial (RIMECARD Trial [randomized clinical trial of intravenous infusion umbilical cord mesenchymal stem cells on cardiopathy]). Circ Res. 2017;121(10):1192–204. https://doi.org/10.1161/CIRCRESAHA.117.310712. Epub 2017/10/05; PubMed PMID: 28974553; PMCID: 6372053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Karantalis V, Hare JM. Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res. 2015;116(8):1413–30. https://doi.org/10.1161/CIRCRESAHA.116.303614. Epub 2015/04/11; PubMed PMID: 25858066; PMCID: 4429294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhu JH, Wang XX, Zhang FR, Shang YP, Tao QM, Chen JZ. Safety and efficacy of autologous endothelial progenitor cells transplantation in children with idiopathic pulmonary arterial hypertension: open-label pilot study. Pediatr Transplant. 2008;12(6):650–5. https://doi.org/10.1111/j.1399-3046.2007.00863.x. Epub 2008/05/10; PubMed PMID: 18466198.

    Article  PubMed  Google Scholar 

  75. Labuz DF, Whitlock AE, Kycia I, Zurakowski D, Fauza DO. Early functional analysis on the pulmonary hemodynamic effects of transamniotic stem cell therapy (TRASCET) in the nitrofen model of congenital diaphragmatic hernia. J Pediatr Surg 2023;58(1):8–13. Epub 20220926. https://doi.org/10.1016/j.jpedsurg.2022.09.022. PubMed PMID: 36280468.

  76. Boelig MM, Flake AW. In Utero Stem Cell Transplantation. In: Fauza DO, Bani M, editors. Fetal stem cells in regenerative medicine: principles and translational strategies. New York: Springer / Humana Press; 2016. p. 317–37.

    Chapter  Google Scholar 

  77. Sagar R, Almeida-Porada G, Blakemore K, Chan JKY, Choolani M, Gotherstrom C, Jaulent A, MacKenzie TC, Mattar C, Porada CD, Peranteau WH, Schneider H, Shaw SW, Waddington SN, Westgren M, David AL. Fetal and maternal safety considerations for in utero therapy clinical trials: ifetis consensus statement. Mol Ther J Am Soc Gene Ther. 2020;28(11):2316–9. https://doi.org/10.1016/j.ymthe.2020.10.012. Epub 2020/10/19; PubMed PMID: 33069884; PMCID: 7647692.

    Article  CAS  Google Scholar 

  78. Labuz DF, Whitlock AE, Kycia I, Zurakowski D, Fauza DO. Transamniotic fetal administration of genetically modified hematopoietic stem cells carrying a human transgene in a syngeneic rat model. Stem Cells Dev. 2023;32(7–8):180–4. https://doi.org/10.1089/scd.2022.0222. Epub 20230228; PubMed PMID: 36719776.

    Article  CAS  PubMed  Google Scholar 

  79. Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, Shearer G, Chang L, Chiang Y, Tolstoshev P, Greenblatt JJ, Rosenberg SA, Klein H, Berger M, Mullen CA, Ramsey WJ, Muul L, Morgan RA, Anderson WF. T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science. 1995;270(5235):475–80. https://doi.org/10.1126/science.270.5235.475. PubMed PMID: 7570001.

    Article  CAS  PubMed  Google Scholar 

  80. Kunisaki SM, Armant M, Kao GS, Stevenson K, Kim H, Fauza DO. Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials. J Pediatr Surg. 2007;42(6):974–9 discussion 9–80. PubMed PMID: 17560205.

    Article  PubMed  Google Scholar 

  81. Steigman SA, Armant M, Bayer-Zwirello L, Kao GS, Silberstein L, Ritz J, Fauza DO. Preclinical regulatory validation of a 3-stage amniotic mesenchymal stem cell manufacturing protocol. J Pediatr Surg. 2008;43(6):1164–9. PubMed PMID: 18558201.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sagar RL, Walther-Jallow L, Gotherstrom C, Westgren M, David AL. Maternal and fetal safety outcomes after in utero stem cell injection: a systematic review. Prenat Diagn. 2023;43(13):1622–37. https://doi.org/10.1002/pd.6459. Epub 20231117; PubMed PMID: 37975679.

    Article  PubMed  Google Scholar 

Download references

Funding

Boston Children's Hospital, 94033.

Author information

Authors and Affiliations

Authors

Contributions

This review article was co-written by ES and DOF.

Corresponding author

Correspondence to Dario O. Fauza.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human subjects performed by any of the authors. This article contains animal studies performed by the authors which were approved by Boston Children’s Hospital’s protocols 00001367, 00001369, 00001578, 00001580, 00001865, 00001981, and 00002058.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scire, E.M., Fauza, D.O. TRASCET—Transamniotic Stem Cell Therapy. Curr Stem Cell Rep (2024). https://doi.org/10.1007/s40778-024-00234-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40778-024-00234-x

Keywords

Navigation