Skip to main content
Log in

Effect of 4-phenylbutyrate addition timing on titer of Fc-fusion protein in Chinese hamster ovary cell cultures

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Chinese hamster ovary (CHO) cells have been widely used in the biotechnology industry for the production of therapeutic proteins, leading to various research efforts to increase the productivity of therapeutic proteins. Although the addition of small molecule enhancers in CHO cell culture can enhance productivity, it poses a problem by negatively affecting product quality. In this study, effects of 4-phenylbutyrate (4-PBA), a chemical chaperone having a positive influence on recombinant protein production in CHO cells, were investigated. By varying the timing of 4-PBA addition, it was confirmed that the titer could be increased by 1.57-fold while reducing negative effects such as growth inhibition and apoptosis, thus preserving product quality. These effects of 4-PBA demonstrate the potential of using additive for developing novel enhancers for the production of recombinant proteins and the development of strategies for CHO cell engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jayapal KP, Wlaschin KF, Hu WS et al (2007) Recombinant protein therapeutics from CHO cells—20 years and counting. Chem Eng Prog 103:40–47

    CAS  Google Scholar 

  2. Bandaranayake AD, Almo SC (2014) Recent advances in mammalian protein production. FEBS Lett 588:253–260. https://doi.org/10.1016/j.febslet.2013.11.035

    Article  CAS  PubMed  Google Scholar 

  3. Tihanyi B, Nyitray L (2020) Recent advances in CHO cell line development for recombinant protein production. Drug Discov Today Technol 38:25–34. https://doi.org/10.1016/j.ddtec.2021.02.003

    Article  PubMed  Google Scholar 

  4. Kim JY, Kim YG, Lee GM (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93:917–930. https://doi.org/10.1007/s00253-011-3758-5

    Article  CAS  PubMed  Google Scholar 

  5. Li F, Vijayasankaran N, Shen AY et al (2010) Cell culture processes for monoclonal antibody production. MAbs 2:466–479. https://doi.org/10.4161/mabs.2.5.12720

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wulhfard S, Baldi L, Hacker DL et al (2010) Valproic acid enhances recombinant mRNA and protein levels in transiently transfected Chinese hamster ovary cells. J Biotechnol 148:128–132. https://doi.org/10.1016/j.jbiotec.2010.05.003

    Article  CAS  PubMed  Google Scholar 

  7. Fomina-Yadlin D, Mujacic M, Maggiora K et al (2015) Transcriptome analysis of a CHO cell line expressing a recombinant therapeutic protein treated with inducers of protein expression. J Biotechnol 212:106–115. https://doi.org/10.1016/j.jbiotec.2015.08.025

    Article  CAS  PubMed  Google Scholar 

  8. Allen MJ, Boyce JP, Trentalange MT et al (2008) Identification of novel small molecule enhancers of protein production by cultured mammalian cells. Biotechnol Bioeng 100:1193–1204. https://doi.org/10.1002/bit.21839

    Article  CAS  PubMed  Google Scholar 

  9. Backliwal G, Hildinger M, Kuettel I et al (2008) Valproic acid: a viable alternative to sodium butyrate for enhancing protein expression in mammalian cell cultures. Biotechnol Bioeng 101:182–189. https://doi.org/10.1002/bit.21882

    Article  CAS  PubMed  Google Scholar 

  10. Chen F, Kou T, Fan L et al (2011) The combined effect of sodium butyrate and low culture temperature on the production, sialylation, and biological activity of an antibody produced in CHO cells. Biotechnol Bioprocess Eng 16:1157–1165. https://doi.org/10.1007/s12257-011-0069-8

    Article  CAS  Google Scholar 

  11. Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20:700–707. https://doi.org/10.1016/j.copbio.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  12. Jiang Z, Sharfstein ST (2008) Sodium butyrate stimulates monoclonal antibody over-expression in CHO cells by improving gene accessibility. Biotechnol Bioeng 100:189–194. https://doi.org/10.1002/bit.21726

    Article  CAS  PubMed  Google Scholar 

  13. Kumar N, Gammell P, Clynes M (2007) Proliferation control strategies to improve productivity and survival during CHO based production culture: a summary of recent methods employed and the effects of proliferation control in product secreting CHO cell lines. Cytotechnology 53:33–46. https://doi.org/10.1007/s10616-007-9047-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang WC, Lu J, Nguyen NB et al (2014) Addition of valproic acid to CHO cell fed-batch cultures improves monoclonal antibody titers. Mol Biotechnol 56:421–428. https://doi.org/10.1007/s12033-013-9725-x

    Article  CAS  PubMed  Google Scholar 

  15. Jeon MK, Lee GM (2007) Correlation between enhancing effect of sodium butyrate on specific productivity and mRNA transcription level in recombinant Chinese hamster ovary cells producing antibody. J Microbiol Biotechnol 17:1036–1040

    CAS  PubMed  Google Scholar 

  16. Kim NS, Lee GM (2000) Overexpression of bcl-2 inhibits sodium butyrate-induced apoptosis in Chinese hamster ovary cells resulting in enhanced humanized antibody production. Biotechnol Bioeng 71:184–193. https://doi.org/10.1002/1097-0290(2000)71:3%3c184::aid-bit1008%3e3.0.co;2-w

    Article  CAS  PubMed  Google Scholar 

  17. Welch WJ, Brown CR (1996) Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones 1:109–115. https://doi.org/10.1379/1466-1268(1996)001%3c0109:iomacc%3e2.3.co;2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Almeida SF, Picarote G, Fleming JV et al (2007) Chemical chaperones reduce endoplasmic reticulum stress and prevent mutant HFE aggregate formation. J Biol Chem 282:27905–27912. https://doi.org/10.1074/jbc.M702672200

    Article  CAS  PubMed  Google Scholar 

  19. Kubota K, Niinuma Y, Kaneko M et al (2006) Suppressive effects of 4-phenylbutyrate on the aggregation of Pael receptors and endoplasmic reticulum stress. J Neurochem 97:1259–1268. https://doi.org/10.1111/j.1471-4159.2006.03782.x

    Article  CAS  PubMed  Google Scholar 

  20. Lim JH, Cha HM, Han HJ et al (2019) Evaluating the impact of suramin additive on CHO cells producing Fc-fusion protein. Biotechnol Lett 41:1255–1263. https://doi.org/10.1007/s10529-019-02728-9

    Article  CAS  PubMed  Google Scholar 

  21. Lim JH, Kim J, Cha HM et al (2022) Establishment of a glycoengineered CHO cell line for enhancing antennary structure and sialylation of CTLA4-Ig. Enzyme Microb Technol 157:110007. https://doi.org/10.1016/j.enzmictec.2022.110007

    Article  CAS  PubMed  Google Scholar 

  22. Park JH, Noh SM, Woo JR et al (2016) Valeric acid induces cell cycle arrest at G1 phase in CHO cell cultures and improves recombinant antibody productivity. Biotechnol J 11:487–496. https://doi.org/10.1002/biot.201500327

    Article  CAS  PubMed  Google Scholar 

  23. O’Flaherty R, Bergin A, Flampouri E et al (2020) Mammalian cell culture for production of recombinant proteins: a review of the critical steps in their biomanufacturing. Biotechnol Adv 43:107552. https://doi.org/10.1016/j.biotechadv.2020.107552

    Article  CAS  PubMed  Google Scholar 

  24. Mimura Y, Lund J, Church S et al (2001) Butyrate increases production of human chimeric IgG in CHO-K1 cells whilst maintaining function and glycoform profile. J Immunol Methods 247:205–216. https://doi.org/10.1016/s0022-1759(00)00308-2

    Article  CAS  PubMed  Google Scholar 

  25. Coronel J, Klausing S, Heinrich C et al (2016) Valeric acid supplementation combined to mild hypothermia increases productivity in CHO cell cultivations. Biochem Eng J 114:101–109. https://doi.org/10.1016/j.bej.2016.06.031

    Article  CAS  Google Scholar 

  26. Strotbek M, Florin L, Koenitzer J et al (2013) Stable microRNA expression enhances therapeutic antibody productivity of Chinese hamster ovary cells. Metab Eng 20:157–166. https://doi.org/10.1016/j.ymben.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  27. Baek E, Kim CL, Kim MG et al (2016) Chemical inhibition of autophagy: examining its potential to increase the specific productivity of recombinant CHO cell lines. Biotechnol Bioeng 113:1953–1961. https://doi.org/10.1002/bit.25962

    Article  CAS  PubMed  Google Scholar 

  28. Li WF, Fan ZL, Wang XY et al (2022) Combination of sodium butyrate and decitabine promotes transgene expression in CHO cells via apoptosis inhibition. N Biotechnol 69:8–17. https://doi.org/10.1016/j.nbt.2022.02.004

    Article  CAS  PubMed  Google Scholar 

  29. Kouraklis G, Theocharis S (2006) Histone deacetylase inhibitors: a novel target of anticancer therapy (review). Oncol Rep 15:489–494

    CAS  PubMed  Google Scholar 

  30. Lea MA, Randolph VM (1998) Induction of reporter gene expression by inhibitors of histone deacetylase. Anticancer Res 18:2717–2722

    CAS  PubMed  Google Scholar 

  31. Kim HD, Jang CY, Choe JM et al (2012) Phenylbutyric acid induces the cellular senescence through an Akt/p21(WAF1) signaling pathway. Biochem Biophys Res Commun 422:213–218. https://doi.org/10.1016/j.bbrc.2012.04.086

    Article  CAS  PubMed  Google Scholar 

  32. Hong JK, Lee SM, Kim KY et al (2014) Effect of sodium butyrate on the assembly, charge variants, and galactosylation of antibody produced in recombinant Chinese hamster ovary cells. Appl Microbiol Biotechnol 98:5417–5425. https://doi.org/10.1007/s00253-014-5596-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was conducted with the support of the Ministry of SME and Startups (Stepping Stone 2023 [RS-2023-00256504] & Industry University Institute Collaboration 2023 [RS-2023-00224268]).

Funding

Stepping Stone 2023, RS-2023-00256504, Guewha Lee, and Industry University Institute Collaboration 2023, RS-2023-00224268, Guewha Lee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Il Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 565 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, J., Lim, JH., Lee, JH. et al. Effect of 4-phenylbutyrate addition timing on titer of Fc-fusion protein in Chinese hamster ovary cell cultures. Biotechnol Bioproc E (2024). https://doi.org/10.1007/s12257-024-00105-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12257-024-00105-6

Keywords

Navigation