Skip to main content
Log in

Limitations of the Plasmid-Based Cas9-Zinc Finger Fusion System for Homology-Directed Knock-In in Chinese Hamster Ovary Cells

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system has been used for the insertion of large transgenes into Chinese hamster ovary cells via co-transfection of a Cas9/guide RNA expression vector and donor plasmid. The Cas9 protein includes nuclear localization sequences that are used as peptide tags for the import of Cas9 into the nucleus. However, the import of a donor plasmid into the nucleus is passive because of the absence of such localization signals; thus, the delivery of Cas9 and the donor plasmid is not synchronized, resulting in low knock-in (KI) efficiency. Here, we modified the Cas9 expression vector expressing a Cas9 protein fused to a zinc finger (ZF) domain, Cas9-ZF, to expedite the translocation of the donor plasmid into the nucleus and the co-localization of the donor plasmid with a CRISPR/Cas9-mediated DNA double-strand break site by tethering Cas9-ZF and the donor plasmid. Compared to the typical donor plasmid and wild-type Cas9, the donor plasmid harboring the ZF-binding motif showed increased homology-mediated KI efficiency, while the engineered Cas9 protein showed decreased expression and gene-editing efficiency. Moreover, the pair of Cas9-ZF and the donor plasmid with the ZF motif did not improve KI efficiency, but rather negated the positive effect of the donor plasmid with the ZF motif. This study demonstrates the importance of the transport of donor plasmids and the limitations of using the plasmid-based Cas9-ZF fusion system to improve KI efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, J. S., H. F. Kildegaard, N. E. Lewis, and G. M. Lee (2019) Mitigating clonal variation in recombinant mammalian cell lines. Trends Biotechnol. 37: 931–942.

    Article  CAS  PubMed  Google Scholar 

  2. Bandyopadhyay, A. A., S. A. O’Brien, L. Zhao, H. Y. Fu, N. Vishwanathan, and W. S. Hu (2019) Recurring genomic structural variation leads to clonal instability and loss of productivity. Biotechnol. Bioeng. 116: 41–53.

    Article  CAS  PubMed  Google Scholar 

  3. Lee, J. S., T. B. Kallehauge, L. E. Pedersen, and H. F. Kildegaard (2015) Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Sci. Rep. 5: 8572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shin, S. W. and J. S. Lee (2020) CHO cell line development and engineering via site-specific integration: challenges and opportunities. Biotechnol. Bioprocess Eng. 25: 633–645.

    Article  CAS  Google Scholar 

  5. Carlson-Stevermer, J., A. A. Abdeen, L. Kohlenberg, M. Goedland, K. Molugu, M. Lou, and K. Saha (2017) Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing. Nat. Commun. 8: 1711.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Roche, P. J. R., H. Gytz, F. Hussain, C. J. F. Cameron, D. Paquette, M. Blanchette, J. Dostie, B. Nagar, and U. D. Akavia (2018) Double-stranded biotinylated donor enhances homology-directed repair in combination with Cas9 monoavidin in mammalian cells. CRISPR J. 1: 414–430.

    Article  CAS  PubMed  Google Scholar 

  7. Gu, B., E. Posfai, and J. Rossant (2018) Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos. Nat. Biotechnol. 36: 632–637.

    Article  CAS  PubMed  Google Scholar 

  8. Aird, E. J., K. N. Lovendahl, A. St Martin, R. S. Harris, and W. R. Gordon (2018) Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun. Biol. 1: 54.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Savic, N., F. C. Ringnalda, H. Lindsay, C. Berk, K. Bargsten, Y. Li, D. Neri, M. D. Robinson, C. Ciaudo, J. Hall, M. Jinek, and G. Schwank (2018) Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. Elife 7: e33761.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ling, X., B. Xie, X. Gao, L. Chang, W. Zheng, H. Chen, Y. Huang, L. Tan, M. Li, and T. Liu (2020) Improving the efficiency of precise genome editing with site-specific Cas9-oligonucleotide conjugates. Sci. Adv. 6: eaaz0051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Strecker, J., A. Ladha, Z. Gardner, J. L. Schmid-Burgk, K. S. Makarova, E. V. Koonin, and F. Zhang (2019) RNA-guided DNA insertion with CRISPR-associated transposases. Science 365: 48–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klompe, S. E., P. L. H. Vo, T. S. Halpin-Healy, and S. H. Sternberg (2019) Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 571: 219–225.

    Article  CAS  PubMed  Google Scholar 

  13. Anzalone, A. V., L. W. Koblan, and D. R. Liu (2020) Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38: 824–844.

    Article  CAS  PubMed  Google Scholar 

  14. Wu, S. C., Y. J. Meir, C. J. Coates, A. M. Handler, P. Pelczar, S. Moisyadi, and J. M. Kaminski (2006) piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 103: 15008–15013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hew, B. E., R. Sato, D. Mauro, I. Stoytchev, and J. B. Owens (2019) RNA-guided piggyBac transposition in human cells. Synth. Biol. (Oxf.) 4: ysz018.

    Article  CAS  PubMed  Google Scholar 

  16. Luo, W., D. L. Galvan, L. E. Woodard, D. Dorset, S. Levy, and M. H. Wilson (2017) Comparative analysis of chimeric ZFP-, TALE- and Cas9-piggyBac transposases for integration into a single locus in human cells. Nucleic Acids Res. 45: 8411–8422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kovač, A., C. Miskey, M. Menzel, E. Grueso, A. Gogol-Döring, and Z. Ivics (2020) RNA-guided retargeting of Sleeping Beauty transposition in human cells. Elife 9: e53868.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shin, S. W., D. Kim, and J. S. Lee (2021) Controlling ratios of plasmid-based double cut donor and CRISPR/Cas9 components to enhance targeted integration of transgenes in Chinese hamster ovary cells. Int. J. Mol. Sci. 22: 2407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dean, D. A., D. D. Strong, and W. E. Zimmer (2005) Nuclear entry of nonviral vectors. Gene Ther. 12: 881–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shin, S. W. and J. S. Lee (2020) Optimized CRISPR/Cas9 strategy for homology-directed multiple targeted integration of transgenes in CHO cells. Biotechnol. Bioeng. 117: 1895–1903.

    Article  CAS  PubMed  Google Scholar 

  21. Zelphati, O., X. Liang, P. Hobart, and P. L. Felgner (1999) Gene chemistry: functionally and conformationally intact fluorescent plasmid DNA. Hum. Gene Ther. 10: 15–24.

    Article  CAS  PubMed  Google Scholar 

  22. Ludtke, J. J., M. G. Sebestyén, and J. A. Wolff (2002) The effect of cell division on the cellular dynamics of microinjected DNA and dextran. Mol. Ther. 5: 579–588. (Erratum published 2002, Mol. Ther. 6: 134)

    Article  CAS  PubMed  Google Scholar 

  23. Chu, V. T., T. Weber, B. Wefers, W. Wurst, S. Sander, K. Rajewsky, and R. Kühn (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33: 543–548. (Erratum published 2018, Nat. Biotechnol. 36: 196)

    Article  CAS  PubMed  Google Scholar 

  24. Lam, A. P. and D. A. Dean (2010) Progress and prospects: nuclear import of nonviral vectors. Gene Ther. 17: 439–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xiong, T., G. E. Meister, R. E. Workman, N. C. Kato, M. J. Spellberg, F. Turker, W. Timp, M. Ostermeier, and C. D. Novina (2017) Targeted DNA methylation in human cells using engineered dCas9-methyltransferases. Sci. Rep. 7: 6732.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bolukbasi, M. F., A. Gupta, S. Oikemus, A. G. Derr, M. Garber, M. H. Brodsky, L. J. Zhu, and S. A. Wolfe (2015) DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nat. Methods 12: 1150–1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Drummond, I. A., P. Rohwer-Nutter, and V. P. Sukhatme (1994) The zebrafish egr1 gene encodes a highly conserved, zinc-finger transcriptional regulator. DNA Cell Biol. 13: 1047–1055.

    Article  CAS  PubMed  Google Scholar 

  28. Sera, T. and C. Uranga (2002) Rational design of artificial zinc-finger proteins using a nondegenerate recognition code table. Biochemistry 41: 7074–7081.

    Article  CAS  PubMed  Google Scholar 

  29. Kim, J. S. and C. O. Pabo (1998) Getting a handhold on DNA: design of poly-zinc finger proteins with femtomolar dissociation constants. Proc. Natl. Acad. Sci. U. S. A. 95: 2812–2817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gersbach, C. A., T. Gaj, and C. F. Barbas3rd (2014) Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc. Chem. Res. 47: 2309–2318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mesika, A., I. Grigoreva, M. Zohar, and Z. Reich (2001) A regulated, NFkappaB-assisted import of plasmid DNA into mammalian cell nuclei. Mol. Ther. 3: 653–657.

    Article  CAS  PubMed  Google Scholar 

  32. Dean, D. A., B. S. Dean, S. Muller, and L. C. Smith (1999) Sequence requirements for plasmid nuclear import. Exp. Cell Res. 253: 713–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shin, S., S. H. Kim, J. S. Lee, and G. M. Lee (2021) Streamlined human cell-based recombinase-mediated cassette exchange platform enables multigene expression for the production of therapeutic proteins. ACS Synth. Biol. 10: 1715–1727.

    Article  CAS  PubMed  Google Scholar 

  34. Standage-Beier, K., N. Brookhouser, P. Balachandran, Q. Zhang, D. A. Brafman, and X. Wang (2019) RNA-guided recombinase-Cas9 fusion targets genomic DNA deletion and integration. CRISPR J. 2: 209–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maeder, M. L., S. Thibodeau-Beganny, J. D. Sander, D. F. Voytas, and J. K. Joung (2009) Oligomerized pool engineering (OPEN): an ‘open-source’ protocol for making customized zinc-finger arrays. Nat. Protoc. 4: 1471–1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Konermann, S., M. D. Brigham, A. E. Trevino, J. Joung, O. O. Abudayyeh, C. Barcena, P. D. Hsu, N. Habib, J. S. Gootenberg, H. Nishimasu, O. Nureki, and F. Zhang (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517: 583–588.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the NRF funded by the Korean government (2021R1A2C4002733 and 2019R1A6A1A11 051471).

Author information

Authors and Affiliations

Authors

Contributions

Dongwoo Kim: Conceptualization, Investigation, Methodology, Writing - original draft, Writing - review & editing. Jae Seong Lee: Conceptualization, Funding acquisition, Methodology, Supervision, Writing - original draft, Writing - review & editing.

Corresponding author

Correspondence to Jae Seong Lee.

Ethics declarations

The authors declare no financial or commercial conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Lee, J.S. Limitations of the Plasmid-Based Cas9-Zinc Finger Fusion System for Homology-Directed Knock-In in Chinese Hamster Ovary Cells. Biotechnol Bioproc E 28, 289–299 (2023). https://doi.org/10.1007/s12257-022-0348-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0348-6

Keywords

Navigation