Skip to main content
Log in

The Inhibitory Functions of Sparstolonin B against Ambient Fine Particulate Matter Induced Lung Injury

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Particulate matter, with an aerodynamic diameter equal to or less than 2.5 µm (PM2.5), is an air pollutant that causes serious pulmonary injury when inhaled. Sparstolonin B (SsnB) from the Chinese herb, Sparganium stoloniferum inhibits the expression of inflammatory cytokines and is involved in survival pathways. We investigated the protective effects of SsnB against PM2.5-induced lung damage. PM2.5 was pretreated intranasally and 30 minutes later, SsnB was injected via a vein in the tail of mouse. The effects of SsnB on PM2.5-induced lung damages, barrier disruptive responses, and pulmonary inflammation and the underlying mechanism of SsnB were investigated. SsnB significantly reduced pathological lung injury, the lung wet/dry weight ratio, and the levels of permeability. It also considerably attenuated PM2.5-induced myeloperoxidase activity in lung tissue, reduced PM2.5-induced inflammatory cytokine levels, and suppressed PM2.5-induced lymphocytes in bronchial alveolar fluid. Moreover, SsnB increased the phosphorylation of the mammalian target of rapamycin (mTOR) and significantly inhibited the expression of PM2.5-stimulated toll-like receptor 2, 4 (TLR2, 4), MyD88, and autophagy-related proteins, LC3II and Beclin 1. We concluded that SsnB regulates both the TLR2, 4-MyD88 and mTOR-autophagy pathways, therefore SsnB can be used as a potential therapeutic agent for preventing PM2.5-induced pulmonary damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, J., Y. Chen, Z. Yu, H. Ding, and Z. Ma (2019) The influence of PM2.5 on lung injury and cytokines In mice. Exp. Ther. Med. 18: 2503–2511.

    CAS  Google Scholar 

  2. Losacco, C. and A. Perillo (2018) Particulate matter air pollution and respiratory impact on humans and animals. Environ. Sci. Pollut. Res. Int. 25: 33901–33910.

    Article  Google Scholar 

  3. Ning, X., X. Ji, G. Li, and N. Sang (2019) Ambient PM2.5 causes lung injuries and coupled energy metabolic disorder. Ecotoxicol. Environ. Saf. 170: 620–626.

    Article  CAS  Google Scholar 

  4. Li, Y., T. Lin, F. Wang, T. Ji, and Z. Guo (2015) Seasonal variation of polybrominated diphenyl ethers in PM2.5 aerosols over the East China Sea. Chemosphere 119: 675–681.

    Article  CAS  Google Scholar 

  5. Zhang, Y., X. Ji, T. Ku, G. Li, and N. Sang (2016) Heavy metals bound to fine particulate matter from northern China induce season-dependent health risks: a study based on myocardial toxicity. Environ. Pollut. 216: 380–390.

    Article  CAS  Google Scholar 

  6. Gong, H., Jr., W. S. Linn, K. W. Clark, K. R. Anderson, M. D. Geller, and C. Sioutas (2005) Respiratory responses to exposures with fine particulates and nitrogen dioxide in the elderly with and without COPD. Inhal. Toxicol. 17: 123–132.

    Article  CAS  Google Scholar 

  7. Tong, Y., G. Zhang, Y. Li, M. Tan, W. Wang, J. Chen, Y. Hwu, P. C. Hsu, J. H. Je, G. Margaritondo, W. Song, R. Jiang, and Z. Jiang (2006) Synchrotron microradiography study on acute lung injury of mouse caused by PM(2.5) aerosols. Eur. J. Radiol. 58: 266–272.

    Article  Google Scholar 

  8. Shoenfelt, J., R. J. Mitkus, R. Zeisler, R. O. Spatz, J. Powell, M. J. Fenton, K. A. Squibb, and A. E. Medvedev (2009) Involvement of TLR2 and TLR4 in inflammatory immune responses induced by fine and coarse ambient air particulate matter. J. Leukoc. Biol. 86: 303–312.

    Article  CAS  Google Scholar 

  9. Iwasaki, A. and R. Medzhitov (2004) Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5: 987–995.

    Article  CAS  Google Scholar 

  10. Williams, M. A., C. Cheadle, T. Watkins, A. Tailor, S. Killedar, P. Breysse, K. C. Barnes, and S. N. Georas (2007) TLR2 and TLR4 as potential biomarkers of environmental particulate matter exposed human myeloid dendritic cells. Biomark. Insights 2: 226–240.

    Article  Google Scholar 

  11. Woodward, N. C., M. C. Levine, A. Haghani, F. Shirmohammadi, A. Saffari, C. Sioutas, T. E. Morgan, and C. E. Finch (2017) Tolllike receptor 4 in glial inflammatory responses to air pollution in vitro and in vivo. J. Neuroinflammation 14: 84.

    Article  Google Scholar 

  12. Kim, Y. C. and K. L. Guan (2015) mTOR: a pharmacologic target for autophagy regulation. J. Clin. Invest. 125: 25–32.

    Article  Google Scholar 

  13. Li, Z., Q. Wen, and R. Zhang (2017) Sources, health effects and control strategies of indoor fine particulate matter (PM2.5): a review. Sci. Total Environ. 586: 610–622.

    Article  CAS  Google Scholar 

  14. Choi, A. M., S. W. Ryter, and B. Levine (2013) Autophagy in human health and disease. N. Engl. J. Med. 368: 651–662.

    Article  CAS  Google Scholar 

  15. Cadwell, K. (2016) Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis. Nat. Rev. Immunol. 16: 661–675.

    Article  CAS  Google Scholar 

  16. Chen, Z. H., Y. F. Wu, P. L. Wang, Y. P. Wu, Z. Y. Li, Y. Zhao, J. S. Zhou, C. Zhu, C. Cao, Y. Y. Mao, F. Xu, B. B. Wang, S. A. Cormier, S. M. Ying, W. Li, and H. H. Shen (2016) Autophagy is essential for ultrafine particle-induced inflammation and mucus hyperproduction in airway epithelium. Autophagy 12: 297–311.

    Article  CAS  Google Scholar 

  17. Hu, Y., J. Lou, Y. Y. Mao, T. W. Lai, L. Y. Liu, C. Zhu, C. Zhang, J. Liu, Y. Y. Li, F. Zhang, W. Li, S. M. Ying, Z. H. Chen, and H. H. Shen (2016) Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury. Autophagy 12: 2286–2299.

    Article  CAS  Google Scholar 

  18. Liang, Q., Q. Wu, J. Jiang, J. Duan, C. Wang, M. D. Smith, H. Lu, Q. Wang, P. Nagarkatti, and D. Fan (2011) Characterization of sparstolonin B, a Chinese herb-derived compound, as a selective Toll-like receptor antagonist with potent anti-inflammatory properties. J. Biol. Chem. 286: 26470–26479.

    Article  CAS  Google Scholar 

  19. Liang, Q., S. Dong, L. Lei, J. Liu, J. Zhang, J. Li, J. Duan, and D. Fan (2015) Protective effects of Sparstolonin B, a selective TLR2 and TLR4 antagonist, on mouse endotoxin shock. Cytokine 75: 302–309.

    Article  CAS  Google Scholar 

  20. Wang, M., L. Xiu, J. Diao, L. Wei, and J. Sun (2015) Sparstolonin B inhibits lipopolysaccharide-induced inflammation in 3T3-L1 adipocytes. Eur. J. Pharmacol. 769: 79–85.

    Article  CAS  Google Scholar 

  21. Liang, Q., F. Yu, X. Cui, J. Duan, Q. Wu, P. Nagarkatti, and D. Fan (2013) Sparstolonin B suppresses lipopolysaccharide-induced inflammation in human umbilical vein endothelial cells. Arch. Pharm. Res. 36: 890–896.

    Article  CAS  Google Scholar 

  22. Bergvall, C. and R. Westerholm (2006) Determination of dibenzopyrenes in standard reference materials (SRM) 1649a, 1650, and 2975 using ultrasonically assisted extraction and LC-GC-MS. Anal. Bioanal. Chem. 384: 438–447.

    Article  CAS  Google Scholar 

  23. Deng, Z., C. Yuan, J. Yang, Y. Peng, W. Wang, Y. Wang, and W. Gao (2019) Behavioral defects induced by chronic social defeat stress are protected by Momordica charantia polysaccharides via attenuation of JNK3/PI3K/AKT neuroinflammatory pathway. Ann. Transl. Med. 7: 6.

    Article  Google Scholar 

  24. Duan, W., A. M. Aguinaldo Datiles, B. P. Leung, C. J. Vlahos, and W. S. Wong (2005) An anti-inflammatory role for a phosphoinositide 3-kinase inhibitor LY294002 in a mouse asthma model. Int. Immunopharmacol. 5: 495–502.

    Article  CAS  Google Scholar 

  25. Lee, W., S. Choo, H. Sim, and J.-S. Bae (2021) Inhibitory activities of ononin on particulate matter-induced oxidative stress. Biotechnol. Bioprocess Eng. 26: 208–215.

    Article  CAS  Google Scholar 

  26. Sim, H., Y. Noh, S. Choo, N. Kim, T. Lee, and J.-S. Bae (2021) Suppressive activities of fisetin on particulate matter-induced oxidative stress. Biotechnol. Bioprocess Eng. 26: 568–574.

    Article  CAS  Google Scholar 

  27. Wang, H., X. Shen, G. Tian, X. Shi, W. Huang, Y. Wu, L. Sun, C. Peng, S. Liu, Y. Huang, X. Chen, F. Zhang, Y. Chen, W. Ding, and Z. Lu (2018) AMPKα2 deficiency exacerbates long-term PM2.5 exposure-induced lung injury and cardiac dysfunction. Free Radic. Biol. Med. 121: 202–214.

    Article  CAS  Google Scholar 

  28. Yan, X. D., Q. M. Wang, C. Tie, H. T. Jin, Y. X. Han, J. L. Zhang, X. M. Yu, Q. Hou, P. P. Zhang, A. P. Wang, P. C. Zhang, Z. Gao, and J. D. Jiang (2017) Polydatin protects the respiratory system from PM2.5 exposure. Sci. Rep. 7: 40030.

    Article  CAS  Google Scholar 

  29. Kovacs-Kàsa, A., M. N. Varn, A. D. Verin, and J. N. Gonzales (2017) Method for the culture of mouse pulmonary microvascular endothelial cells. Sci. Pages Pulmonol. 1: 7–18.

    Google Scholar 

  30. Song, Y., K. Joo, and J. H. Seo (2021) Evaluation of mechanical and thermal properties of hydroxyapatite-levan composite bone graft. Biotechnol. Bioprocess Eng. 26: 201–207.

    Article  CAS  Google Scholar 

  31. Kim, J. Y., S. J. Kim, G. You, E. S. Choi, J. H. Lee, H. Mok, and J. B. Lee (2021) Protective effects of titanium dioxide-based emulsion after short-term and long-term infrared-A ray irradiation on skin cells. Biotechnol. Bioprocess Eng. 26: 595–605.

    Article  CAS  Google Scholar 

  32. Smith, K. M., J. D. Mrozek, S. C. Simonton, D. R. Bing, P. A. Meyers, J. E. Connett, and M. C. Mammel (1997) Prolonged partial liquid ventilation using conventional and high-frequency ventilatory techniques: gas exchange and lung pathology in an animal model of respiratory distress syndrome. Crit. Care Med. 25: 1888–1897.

    Article  CAS  Google Scholar 

  33. Kim, C., S. H. Ryu, N. Kim, W. Lee, and J.-S. Bae (2022) Renal protective effects of sparstolonin B in a mouse model of sepsis. Biotechnol. Bioprocess Eng. 27: 157–162.

    Article  CAS  Google Scholar 

  34. Lee, I.-C. and J.-S. Bae (2022) Hepatic protective effects of jujuboside B through the modulation of inflammatory pathways. Biotechnol. Bioprocess Eng. 27: 336–343.

    Article  CAS  Google Scholar 

  35. Kim, J. E., W. Lee, S. Yang, S. H. Cho, M. C. Baek, G. Y. Song, and J. S. Bae (2019) Suppressive effects of rare ginsenosides, Rk1 and Rg5, on HMGB1-mediated septic responses. Food Chem. Toxicol. 124: 45–53.

    Article  CAS  Google Scholar 

  36. Lee, W., S. H. Cho, J. E. Kim, C. Lee, J. H. Lee, M. C. Baek, G. Y. Song, and J. S. Bae (2019) Suppressive effects of ginsenoside Rh1 on HMGB1-mediated septic responses. Am. J. Chin. Med. 47: 119–133.

    Article  CAS  Google Scholar 

  37. Wegesser, T. C. and J. A. Last (2009) Mouse lung inflammation after instillation of particulate matter collected from a working dairy barn. Toxicol. Appl. Pharmacol. 236: 348–357.

    Article  CAS  Google Scholar 

  38. Orellano, P., J. Reynoso, N. Quaranta, A. Bardach, and A. Ciapponi (2020) Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: systematic review and meta-analysis. Environ. Int. 142: 105876.

    Article  CAS  Google Scholar 

  39. Komarova, Y. A., D. Mehta, and A. B. Malik (2007) Dual regulation of endothelial junctional permeability. Sci. STKE 2007: re8.

    Article  Google Scholar 

  40. Wang, T., Y. Shimizu, X. Wu, G. T. Kelly, X. Xu, L. Wang, Z. Qian, Y. Chen, and J. G. N. Garcia (2017) Particulate matter disrupts human lung endothelial cell barrier integrity via Rho-dependent pathways. Pulm. Circ. 7: 617–623.

    Article  CAS  Google Scholar 

  41. Wang, T., E. T. Chiang, L. Moreno-Vinasco, G. D. Lang, S. Pendyala, J. M. Samet, A. S. Geyh, P. N. Breysse, S. N. Chillrud, V. Natarajan, and J. G. Garcia (2010) Particulate matter disrupts human lung endothelial barrier integrity via ROS- and p38 MAPK-dependent pathways. Am. J. Respir. Cell Mol. Biol. 42: 442–449.

    Article  CAS  Google Scholar 

  42. Qin, Y. H., S. M. Dai, G. S. Tang, J. Zhang, D. Ren, Z. W. Wang, and Q. Shen (2009) HMGB1 enhances the proinflammatory activity of lipopolysaccharide by promoting the phosphorylation of MAPK p38 through receptor for advanced glycation end products. J. Immunol. 183: 6244–6250.

    Article  CAS  Google Scholar 

  43. Sun, C., C. Liang, Y. Ren, Y. Zhen, Z. He, H. Wang, H. Tan, X. Pan, and Z. Wu (2009) Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK 1/2 mitogen-activated protein kinase pathways. Basic Res. Cardiol. 104: 42–49.

    Article  CAS  Google Scholar 

  44. Wang, J. S., C. Y. Tseng, and M. W. Chao (2017) Diesel exhaust particles contribute to endothelia apoptosis via autophagy pathway. Toxicol. Sci. 156: 72–83.

    Article  CAS  Google Scholar 

  45. Shintani, T. and D. J. Klionsky (2004) Autophagy in health and disease: a double-edged sword. Science 306: 990–995.

    Article  CAS  Google Scholar 

  46. Ding, Y., P. Liu, Z. L. Chen, S. J. Zhang, Y. Q. Wang, X. Cai, L. Luo, X. Zhou, and L. Zhao (2018) Emodin attenuates lipopolysaccharide-induced acute liver injury via inhibiting the TLR4 signaling pathway in vitro and in vivo. Front. Pharmacol. 9: 962.

    Article  Google Scholar 

  47. Zhang, Z., N. Chen, J. B. Liu, J. B. Wu, J. Zhang, Y. Zhang, and X. Jiang (2014) Protective effect of resveratrol against acute lung injury induced by lipopolysaccharide via inhibiting the myd88-dependent Toll-like receptor 4 signaling pathway. Mol. Med. Rep. 10: 101–106.

    Article  CAS  Google Scholar 

  48. Wang, J., J. Huang, L. Wang, C. Chen, D. Yang, M. Jin, C. Bai, and Y. Song (2017) Urban particulate matter triggers lung inflammation via the ROS-MAPK-NF-κB signaling pathway. J. Thorac. Dis. 9: 4398–4412.

    Article  Google Scholar 

  49. Xu, F., X. Qiu, X. Hu, Y. Shang, M. Pardo, Y. Fang, J. Wang, Y. Rudich, and T. Zhu (2018) Effects on IL-1β signaling activation induced by water and organic extracts of fine particulate matter (PM2.5) in vitro. Environ. Pollut. 237: 592–600.

    Article  CAS  Google Scholar 

  50. Ling, S. H. and S. F. van Eeden (2009) Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 4: 233–243.

    Article  CAS  Google Scholar 

  51. Choi, H., W. Lee, E. Kim, S. K. Ku, and J. S. Bae (2019) Inhibitory effects of collismycin C and pyrisulfoxin A on particulate matter-induced pulmonary injury. Phytomedicine 62: 152939.

    Article  CAS  Google Scholar 

  52. Lee, W., S. Y. Jeong, M. J. Gu, J. S. Lim, E. K. Park, M. C. Baek, J. S. Kim, D. Hahn, and J. S. Bae (2019) Inhibitory effects of compounds isolated from Dioscorea batatas Decne peel on particulate matter-induced pulmonary injury in mice. J. Toxicol. Environ. Health A 82: 727–740.

    Article  CAS  Google Scholar 

  53. Xu, C., Q. Shi, L. Zhang, and H. Zhao (2018) High molecular weight hyaluronan attenuates fine particulate matter-induced acute lung injury through inhibition of ROS-ASK1-p38/JNK-mediated epithelial apoptosis. Environ. Toxicol. Pharmacol. 59: 190–198.

    Article  CAS  Google Scholar 

  54. Zhang, C., Q. Meng, X. Zhang, S. Wu, S. Wang, R. Chen, and X. Li (2016) Role of astrocyte activation in fine particulate matter-enhancement of existing ischemic stroke in Sprague-Dawley male rats. J. Toxicol. Environ. Health A 79: 393–401.

    Article  CAS  Google Scholar 

  55. Wang, N., K. Mengersen, M. Kimlin, M. Zhou, S. Tong, L. Fang, B. Wang, and W. Hu (2018) Lung cancer and particulate pollution: a critical review of spatial and temporal analysis evidence. Environ. Res. 164: 585–596.

    Article  CAS  Google Scholar 

  56. Morimoto, Y., H. Izumi, Y. Yoshiura, K. Fujishima, K. Yatera, and K. Yamamoto (2016) Usefulness of intratracheal instillation studies for estimating nanoparticle-induced pulmonary toxicity. Int. J. Mol. Sci. 17: 165.

    Article  Google Scholar 

  57. Cho, C. C., W. Y. Hsieh, C. H. Tsai, C. Y. Chen, H. F. Chang, and C. S. Lin (2018) In vitro and in vivo experimental studies of PM2.5 on disease progression. Int. J. Environ. Res. Public Health 15: 1380.

    Article  Google Scholar 

  58. Matsuyama, H., F. Amaya, S. Hashimoto, H. Ueno, S. Beppu, M. Mizuta, N. Shime, A. Ishizaka, and S. Hashimoto (2008) Acute lung inflammation and ventilator-induced lung injury caused by ATP via the P2Y receptors: an experimental study. Respir. Res. 9: 79.

    Article  Google Scholar 

  59. Herrero, R., G. Sanchez, and J. A. Lorente (2018) New insights into the mechanisms of pulmonary edema in acute lung injury. Ann. Transl. Med. 6: 32.

    Article  Google Scholar 

  60. Lee, W., S. Y. Park, Y. Yoo, S. Y. Kim, J. E. Kim, S. W. Kim, Y. K. Seo, E. K. Park, I. S. Kim, and J. S. Bae (2018) Macrophagic Stabilin-1 restored disruption of vascular integrity caused by sepsis. Thromb. Haemost. 118: 1776–1789.

    Article  Google Scholar 

  61. Bae, J. S. (2012) Role of high mobility group box 1 in inflammatory disease: focus on sepsis. Arch. Pharm. Res. 35: 1511–1523.

    Article  CAS  Google Scholar 

  62. Mizumura, K., S. M. Cloonan, J. A. Haspel, and A. M. K. Choi (2012) The emerging importance of autophagy in pulmonary diseases. Chest 142: 1289–1299.

    Article  CAS  Google Scholar 

  63. Hu, Y., J. Liu, Y. F. Wu, J. Lou, Y. Y. Mao, H. H. Shen, and Z. H. Chen (2014) mTOR and autophagy in regulation of acute lung injury: a review and perspective. Microbes. Infect. 16: 727–734.

    Article  CAS  Google Scholar 

  64. Zeng, M., W. Sang, S. Chen, R. Chen, H. Zhang, F. Xue, Z. Li, Y. Liu, Y. Gong, H. Zhang, and X. Kong (2017) 4-PBA inhibits LPS-induced inflammation through regulating ER stress and autophagy in acute lung injury models. Toxicol. Lett. 271: 26–37.

    Article  CAS  Google Scholar 

  65. Shao, X., D. Lai, L. Zhang, and H. Xu (2016) Induction of autophagy and apoptosis via PI3K/AKT/TOR pathways by azadirachtin A in Spodoptera litura cells. Sci. Rep. 6: 35482.

    Article  CAS  Google Scholar 

  66. Wang, Z. G., Y. Wang, Y. Huang, Q. Lu, L. Zheng, D. Hu, W. K. Feng, Y. L. Liu, K. T. Ji, H. Y. Zhang, X. B. Fu, X. K. Li, M. P. Chu, and J. Xiao (2015) bFGF regulates autophagy and ubiquitinated protein accumulation induced by myocardial ischemia/reperfusion via the activation of the PI3K/Akt/mTOR pathway. Sci. Rep. 5: 9287.

    Article  CAS  Google Scholar 

  67. Saxton, R. A. and D. M. Sabatini (2017) mTOR signaling in growth, metabolism, and disease. Cell 168: 960–976.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI15C0001) and by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2020R1A2C1004131 and 2022R1A4A10189001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Sup Bae.

Ethics declarations

The authors declare no conflicts of interest.

Mice were treated according to the Guidelines for the Care and Use of Laboratory Animals by Kyungpook National University (IRB No. KNU 2017-102).

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C., Ryu, S.H., Choi, H. et al. The Inhibitory Functions of Sparstolonin B against Ambient Fine Particulate Matter Induced Lung Injury. Biotechnol Bioproc E 27, 949–960 (2022). https://doi.org/10.1007/s12257-022-0286-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0286-3

Keywords

Navigation