Skip to main content
Log in

Hyaluronic Acid Stimulated Enterocytic Differentiation of Intestinal Stem Cells and Enhanced Enteroid Grafting on Scaffolds

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Hyaluronic acid (HA) is one of the main components of the extracellular matrix, and functions as a stabilizing molecule for cell-niche interactions. Although the mechanism of HA in supporting cell attachment is debatable, HA-based scaffolds are increasingly being applied in tissue engineering owing to their excellent mechanical properties and biocompatibility. HA reportedly enhances the intestinal growth in postnatal mice. In the present study, we aimed to investigate the effects of HA on intestinal stem cells (ISCs) using an in vitro enteroid culture system. A high-concentration of HA (0.5 mg/mL) significantly lowered the proliferative activity of ISCs with decreased enteroid-forming efficiency compared to the control ISCs. In contrast, a low-concentration of HA (0.1 mg/mL) did not affect the enteroid-forming efficiency of ISCs, but up regulated markers of enterocytic differentiation, villin, and HA receptor, CD44 and TLR4, in the enteroid cells. When enteroid fragments were seeded on an intestinal submucosa bioscaffold, HA treatment enhanced the growth and differentiation of enteroid cells on the material with a high villin expression level in the cell grafts. These results suggest that HA treatment is effective in promoting enterocytic differentiation of ISCs and enteroid grafting on scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bielawska, B. and J. P. Allard (2017) Parenteral nutrition and intestinal failure. Nutrients 9: 466.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pironi, L., J. Arends, F. Bozzetti, C. Cuerda, L. Gillanders, P. B. Jeppesen, F. Joly, D. Kelly, S. Lal, M. Staun, K. Szczepanek, A. Van Gossum, G Wanten, S. M. Schneider, and Home Artificial Nutrition & Chronic Intestinal Failure Special Interest Group of ESPEN (2016) ESPEN guidelines on chronic intestinal failure in adults. Clin. Nutr. 35: 247–307. (Erratum published 2017, Clin. Nutr. 36: 619)

    Article  PubMed  Google Scholar 

  3. Kesseli, S. and D. Sudan (2019) Small bowel transplantation. Surg. Clin. North Am. 99: 103–116.

    Article  PubMed  Google Scholar 

  4. Hibi, T., Y. Chen, J. I. Kim, M. D. Lee, T. Matsuura, and T. Ueno (2020) Current status of intestinal transplantation in East Asia. Curr. Opin. Organ Transplant. 25: 165–168.

    Article  PubMed  Google Scholar 

  5. Qi, D., W. Shi, A. R. Black, M. A. Kuss, X. Pang, Y. He, B. Liu, and B. Duan (2020) Repair and regeneration of small intestine: a review of current engineering approaches. Biomaterials 240: 119832.

    Article  CAS  PubMed  Google Scholar 

  6. Meran, L., I. Massie, S. Campinoti, A. E. Weston, R. Gaifulina, L. Tullie, P. Faull, M. Orford, A. Kucharska, A. Baulies, L. Novellasdemunt, N. Angelis, E. Hirst, J. König, A. M. Tedeschi, A. F. Pellegata, S. Eli, A. P. Snijders, L. Collinson, N. Thapar, G. M. H. Thomas, S. Eaton, P. Bonfanti, P. De Coppi, and V. S. W. Li (2020) Engineering transplantable jejunal mucosal grafts using patient-derived organoids from children with intestinal failure. Nat. Med. 26: 1593–1601.

    Article  CAS  PubMed  Google Scholar 

  7. Martin, L. Y., M. R. Ladd, A. Werts, C. P. Sodhi, J. C. March, and D. J. Hackam (2018) Tissue engineering for the treatment of short bowel syndrome in children. Pediatr. Res. 83: 249–257.

    Article  CAS  PubMed  Google Scholar 

  8. Ladd, M. R., C. M. Costello, C. Gosztyla, A. D. Werts, B. Johnson, W. B. Fulton, L. Y. Martin, E. J. Redfield, B. Crawford, R. Panaparambil, C. P. Sodhi, J. C. March, and D. J. Hackam (2019) Development of intestinal scaffolds that mimic native mammalian intestinal tissue. Tissue Eng. Part A 25: 1225–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Creff, J., R. Courson, T. Mangeat, J. Foncy, S. Souleille, C. Thibault, A. Besson, and L. Malaquin (2019) Fabrication of 3D scaffolds reproducing intestinal epithelium topography by high-resolution 3D stereolithography. Biomaterials 221: 119404.

    Article  CAS  PubMed  Google Scholar 

  10. Costello, C. M., R. M. Sorna, Y. L. Goh, I. Cengic, N. K. Jain, and J. C. March (2014) 3-D intestinal scaffolds for evaluating the therapeutic potential of probiotics. Mol. Pharm. 11: 2030–2039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Antfolk, M. and K. B. Jensen (2020) A bioengineering perspective on modelling the intestinal epithelial physiology in vitro. Nat. Commun. 11: 6244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sato, T., R. G. Vries, H. J. Snippert, M. van de Wetering, N. Barker, D. E. Stange, J. H. van Es, A. Abo, P. Kujala, P. J. Peters, and H. Clevers (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459: 262–265.

    Article  CAS  PubMed  Google Scholar 

  13. Bitar, K. N. and S. Raghavan (2012) Intestinal tissue engineering: current concepts and future vision of regenerative medicine in the gut. Neurogastroenterol. Motil. 24: 7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dubrovsky, G. and J. C. Y. Dunn (2018) Mechanisms for intestinal regeneration. Curr. Opin. Pediatr. 30: 424–429.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Clevers, H., R. K. Conder, V. S. W. Li, M. P. Lutolf, L. Vallier, S. Chan, T. C. Grikscheit, K. B. Jensen, and P. De Coppi (2019) Tissue-engineering the intestine: the trials before the trials. Cell Stem Cell 24: 855–859.

    Article  CAS  PubMed  Google Scholar 

  16. Beumer, J. and H. Clevers (2021) Cell fate specification and differentiation in the adult mammalian intestine. Nat. Rev. Mol. Cell Biol. 22: 39–53.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, Y., C. Li, Y.-H. Tsai, and S.-H. Tseng (2019) Intestinal crypt organoid: isolation of intestinal stem cells, in vitro culture, and optical observation. Methods Mol. Biol. 1576: 215–228.

    Article  CAS  PubMed  Google Scholar 

  18. Dutta, D. and H. Clevers (2017) Organoid culture systems to study host-pathogen interactions. Curr. Opin. Immunol. 48: 15–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hares, M. F., E. A. Tiffney, L. J. Johnston, L. Luu, C. J. Stewart, R. J. Flynn, and J. L. Coombes (2021) Stem cell-derived enteroid cultures as a tool for dissecting host-parasite interactions in the small intestinal epithelium. Parasite Immunol. 43: e12765.

    Article  PubMed  Google Scholar 

  20. Han, X., M. A. Mslati, E. Davies, Y. Chen, J. M. Allaire, and B. A. Vallance (2021) Creating a more perfect union: modeling intestinal bacteria-epithelial interactions using organoids. Cell. Mol. Gastroenterol. Hepatol. 12: 769–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luu, L., L. J. Johnston, H. Derricott, S. D. Armstrong, N. Randle, C. S. Hartley, C. A. Duckworth, B. J. Campbell, J. M. Wastling, and J. L. Coombes (2019) An open-format enteroid culture system for interrogation of interactions between Toxoplasma gondii and the intestinal epithelium. Front. Cell. Infect. Microbiol. 9: 300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Burge, K., A. Wilson, and H. Chaaban (2022) In vitro apical-out enteroid model of necrotizing enterocolitis. J. Vis. Exp. (184): https://doi.org/10.3791/64003.

  23. Wang, Y., D. B. Gunasekara, M. I. Reed, M. DiSalvo, S. J. Bultman, C. E. Sims, S. T. Magness, and N. L. Allbritton (2017) A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium. Biomaterials 128: 44–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dicker, K. T., L. A. Gurski, S. Pradhan-Bhatt, R. L. Witt, M. C. Farach-Carson, and X. Jia (2014) Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater. 10: 1558–1570.

    Article  CAS  PubMed  Google Scholar 

  25. Kobayashi, T., T. Chanmee, and N. Itano (2020) Hyaluronan: metabolism and function. Biomolecules 10: 1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abatangelo, G., V. Vindigni, G. Avruscio, L. Pandis, and P. Brun (2020) Hyaluronic acid: redefining its role. Cells 9: 1743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhai, P., X. Peng, B. Li, Y. Liu, H. Sun, and X. Li (2020) The application of hyaluronic acid in bone regeneration. Int. J. Biol. Macromol. 151: 1224–1239.

    Article  CAS  PubMed  Google Scholar 

  28. Hemshekhar, M., R. M. Thushara, S. Chandranayaka, L. S. Sherman, K. Kemparaju, and K. S. Girish (2016) Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. Int. J. Biol. Macromol. 86: 917–928.

    Article  CAS  PubMed  Google Scholar 

  29. Riehl, T. E., S. Santhanam, L. Foster, M. Ciorba, and W. F. Stenson (2015) CD44 and TLR4 mediate hyaluronic acid regulation of Lgr5+ stem cell proliferation, crypt fission, and intestinal growth in postnatal and adult mice. Am. J. Physiol. Gastrointest. Liver Physiol. 309: G874–G887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Riehl, T. E., D. Alvarado, X. Ee, M. A. Ciorba, and W. F. Stenson (2020) Hyaluronic acid promotes Lgr5+ stem cell proliferation and crypt fission through TLR4 and PGE2 transactivation of EGFR. Am. J. Physiol. Gastrointest. Liver Physiol. 319: G63–G73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, Y., S. H. Tseng, C. L. Yao, C. Li, and Y. H. Tsai (2018) Distinct effects of growth hormone and glutamine on activation of intestinal stem cells. JPEN J. Parenter. Enteral Nutr. 42: 642–651.

    CAS  PubMed  Google Scholar 

  32. Barachetti, L., M. Zanni, D. Stefanello, and A. Rampazzo (2020) Use of four-layer porcine small intestinal submucosa alone as a scaffold for the treatment of deep corneal defects in dogs and cats: preliminary results. Vet. Rec. 186: e28.

    Article  PubMed  Google Scholar 

  33. Kim, Y., S. Kang, S. Nam, S. Yun, and K. Seo (2020) Application of porcine small intestinal submucosa (Vetrix BioSIS®) for recurrent corneal sequestrum in an American shorthair cat. Korean J. Vet. Res. 60: 229–232.

    Article  Google Scholar 

  34. Misra, S., V. C. Hascall, R. R. Markwald, and S. Ghatak (2015) Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front. Immunol. 6: 201.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang, Y. G., S. Wu, Y. Xia, and J. Sun (2014) Salmonella-infected crypt-derived intestinal organoid culture system for host-bacterial interactions. Physiol. Rep. 2: e12147.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Williamson, I. A., J. W. Arnold, L. A. Samsa, L. Gaynor, M. DiSalvo, J. L. Cocchiaro, I. Carroll, M. A. Azcarate-Peril, J. F. Rawls, N. L. Allbritton, and S. T. Magness (2018) A high-throughput organoid microinjection platform to study gastrointestinal microbiota and luminal physiology. Cell. Mol. Gastroenterol. Hepatol. 6: 301–319.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nikolaev, M., O. Mitrofanova, N. Broguiere, S. Geraldo, D. Dutta, Y. Tabata, B. Elci, N. Brandenberg, I. Kolotuev, N. Gjorevski, H. Clevers, and M. P. Lutolf (2020) Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585: 574–578.

    Article  PubMed  Google Scholar 

  38. Leung, C. M., P. de Haan, K. Ronaldson-Bouchard, G.-A. Kim, J. Ko, H. S. Rho, Z. Chen, P. Habibovic, N. L. Jeon, S. Takayama, M. L. Shuler, G. Vunjak-Novakovic, O. Frey, E. Verpoorte, and Y.-C. Toh (2022) A guide to the organ-on-a-chip. Nat. Rev. Methods Primers 2: 33.

    Article  CAS  Google Scholar 

  39. Bein, A., W. Shin, S. Jalili-Firoozinezhad, M. H. Park, A. Sontheimer-Phelps, A. Tovaglieri, A. Chalkiadaki, H. J. Kim, and D. E. Ingber (2018) Microfluidic organ-on-a-chip models of human intestine. Cell. Mol. Gastroenterol. Hepatol. 5: 659–668.

    Article  PubMed  PubMed Central  Google Scholar 

  40. López-Ruiz, E., G. Jiménez, L. Álvarez de Cienfuegos, C. Antic, R. Sabata, J. A. Marchal, and P. Gálvez-Martín (2019) Advances of hyaluronic acid in stem cell therapy and tissue engineering, including current clinical trials. Eur. Cell. Mater. 37: 186–213.

    Article  PubMed  Google Scholar 

  41. Gracz, A. D., M. K. Fuller, F. Wang, L. Li, M. Stelzner, J. C. Dunn, M. G. Martin, and S. T. Magness (2013) Brief report: CD24 and CD44 mark human intestinal epithelial cell populations with characteristics of active and facultative stem cells. Stem Cells 31: 2024–2030.

    Article  CAS  PubMed  Google Scholar 

  42. Chen, Y., X. Q. Yang, B. Y. Tseng, Y. H. Tsai, S. H. Tseng, C. H. Lee, and C. L. Yao (2018) Deferoxamine preconditioning activated hypoxia-inducible factor-1α and MyD88-dependent Toll-like receptor 4 signaling in intestinal stem cells. J. Pediatr. Surg. 53: 2349–2356.

    Article  PubMed  Google Scholar 

  43. Walter, R. J., S. J. Sonnentag, L. Munoz-Sagredo, M. Merkel, L. Richert, F. Bunert, Y. M. Heneka, T. Loustau, M. Hodder, R. A. Ridgway, O. J. Sansom, Y. Mely, U. Rothbauer, M. Schmitt, and V. Orian-Rousseau (2022) Wnt signaling is boosted during intestinal regeneration by a CD44-positive feedback loop. Cell Death Dis. 13: 168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from Far Eastern Memorial Hospital Yuan-Ze University Joint Research Program (Project No. FEMH-YZU-2020-005) awarded to Siu Chung Ha, Chao-Ling Yao, and Yun Chen.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Chen or Chao-Ling Yao.

Additional information

Ethical Statements

The authors declare there is no conflict of interest. Neither ethical approval nor informed consent was required for this study.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, S.C., Tsai, YH., Hong, SG. et al. Hyaluronic Acid Stimulated Enterocytic Differentiation of Intestinal Stem Cells and Enhanced Enteroid Grafting on Scaffolds. Biotechnol Bioproc E 28, 451–458 (2023). https://doi.org/10.1007/s12257-022-0266-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0266-7

Keywords

Navigation