Skip to main content
Log in

Cell-free Systems: Recent Advances and Future Outlook

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Cell-free systems utilize a subset of cellular components without intact cell wall and/or membranes. The system was first invented for use in fermentation. Subsequent improvements enabled its application in protein synthesis, which is still the most common use of the system. Lately, attempts have been reported where metabolic engineering concepts and techniques were applied to cell-free systems and/or vice-versa. These attempts and advances led to exciting discoveries about biochemical reactions, as well as properties and/or structures of cellular components that make up complex biological systems. This review will first provide a basic overview and brief history of the cell-free system. Then, explanation on recent advances in the field will be provided, followed by notes on the innovative applications. Future outlook of the field will also be covered with the emphasis on how the emerging data science methods can be applied to improve the system and its applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Swartz, J. R. (2018) Expanding biological applications using cell-free metabolic engineering: An overview. Metab. Eng. 50: 156–172.

    Article  CAS  PubMed  Google Scholar 

  2. Buchner, E. (1897) Alkoholische Gährung ohne Hefezellen. Ber. Dtsch. Chem. Ges. 30: 117–124.

    Article  CAS  Google Scholar 

  3. Nirenberg, M. W. and H. J. Matthaei (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc. Nat. Acad. Sci. USA. 47: 1588–1602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bechtold, M., E. Brenna, C. Femmer, F. G. Gatti, S. Panke, F. Parmeggiani, and A. Sacchetti (2012) Biotechnological development of a practical synthesis of ethyl (S)-2-ethoxy-3-(p-methoxyphenyl)propanoate (EEHP): Over 100-fold productivity increase from yeast whole cells to recombinant isolated enzymes. Org. Process Res. Dev. 16: 269–276.

    Article  CAS  Google Scholar 

  5. Korman, T. P., P. H. Opgenorth, and J. U. Bowie (2017) A synthetic biochemistry platform for cell free production of monoterpenes from glucose. Nat. Comm. 8: 15526.

    Article  CAS  Google Scholar 

  6. Takors, R. (2012) Scale-up of microbial processes: Impacts, tools and open questions. J. Biotechnol. 160: 3–9.

    Article  CAS  PubMed  Google Scholar 

  7. Calhoun, K. and J. R. Swartz (2006) Total amino acid stabilization during cell-free protein synthesis reactions. J. Biotechnol. 123: 193–203.

    Article  CAS  PubMed  Google Scholar 

  8. Shrestha, P., T. M. Holland, and B. C. Bundy (2012) Streamlined extract preparation for Escherichia coli-based cell-free protein synthesis by sonication or bead vortex mixing. Biotechniques. 53: 163–174.

    Article  CAS  PubMed  Google Scholar 

  9. Didovyk, A., T. Tonooka, L. Tsimring, and J. Hasty (2017) Rapid and scalable preparation of bacterial lysates for cell-free gene expression. ACS Synth. Biol. 6: 2198–2208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim, D. M. and J. R. Swartz (2000) Oxalate improves protein synthesis by enhancing ATP supply in a cell-free system derived from Escherichia coli. Biotechnol. Lett. 22: 1537–1542.

    Article  CAS  Google Scholar 

  11. Nagumo, Y., K. Fujiwara, K. Horisawa, H. Yanagawa, and N. Doi (2016) PURE mRNA display for in vitro selection of single-chain antibodies. J. Biochem. 159: 519–526.

    Article  CAS  PubMed  Google Scholar 

  12. Smith, M. T., S. D. Berkheimer, C. J. Werner, and B. C. Bundy (2014) Lyophilized Escherichia coli-based cell-free systems for robust, high-density, long-term storage. Biotechniques. 56: 186–193.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, D. V., J. F. Zawada, and J. R. Swartz (2005) Streamlining Escherichia coli S30 extract preparation for economical cell-free protein synthesis. Biotechnol. Prog. 21: 460–465.

    Article  CAS  PubMed  Google Scholar 

  14. Lu, Y. (2017) Cell-free synthetic biology: Engineering in an open world. Synth. Sys. Bioltechnol. 2: 23–27.

    Article  Google Scholar 

  15. Lim, H. J. and D. M. Kim (2019) Cell-free metabolic engineering: Recent developments and future prospects. Methods Protoc. 2: 33.

    Article  CAS  PubMed Central  Google Scholar 

  16. Brodel, A. K., A. Sonnabend, and S. Kubick (2014) Cell-free protein expression based on extracts from CHO cells. Biotechnol. Bioeng. 111: 25–36.

    Article  PubMed  CAS  Google Scholar 

  17. Ezure, T., K. Nanatani, Y. Sato, S. Suzuki, K. Aizawa, S. Souma, M. Ito, T. Hohsaka, G. von Heijine, T. Utsumi, K. Abe, E. Ando, and N. Uozumi (2014) A cell-free translocation system using extracts of cultured insect cells to yield functional membrane proteins. PLoS One. 9: e112874.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Takai, K., T. Sawasaki, and Y. Endo (2010) Practical cell-free protein synthesis system using purified wheat embryos. Nat. Protoc. 5: 227–238.

    Article  CAS  PubMed  Google Scholar 

  19. Kuruma, Y. and T. Ueda (2015) The PURE system for the cell-free synthesis of membrane proteins. Nat. Protoc. 10: 1328–1344.

    Article  CAS  PubMed  Google Scholar 

  20. Michel-Reydellet, N., K. Calhoun, and J. R. Swartz (2004) Amino acid stabilization for cell-free protein synthesis by modification of the Escherichia coli genome. Metab. Eng. 6: 197–203.

    Article  CAS  PubMed  Google Scholar 

  21. Giel, J. L., D. Rodionov, M. Liu, F. R. Blattner, and P. J. Kiley (2006) IscR-dependent gene expression links iron-sulphur cluster assembly to the control of O-regulated genes in Escherichia coli. Mol. Microbiol. 60: 1058–1075.

    Article  CAS  PubMed  Google Scholar 

  22. Boyer, M. E., J. A. Stapleton, J. M. Kuchenreuther, C. W. Wang, and J. R. Swartz (2008) Cell-free synthesis and maturation of [FeFe] hydrogenases. Biotechnol. Bioeng. 99: 59–67.

    Article  CAS  PubMed  Google Scholar 

  23. De La Paz, L. (2016) Elucidating in vitro Activation of [FeFe] Hydrogenase. Ph.D. Thesis. Stanford University, Stanford, CA, USA.

    Google Scholar 

  24. Peters, J. W., W. N. Lanzilotta, B. J. Lemon, and L. C. Seefeldt (1998) X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science. 282: 1853–1858.

    Article  CAS  PubMed  Google Scholar 

  25. Kuchenreuther, J. M., W. K. Myers, T. A. Stich, S. J. George, Y. Nejatyjahromy, J. R. Swartz, and R. D. Britt (2013) A radical intermediate in tyrosine scission to the CO and CN- ligands of FeFe hydrogenase. Science. 342: 472–475.

    Article  CAS  PubMed  Google Scholar 

  26. Kuchenreuther, J. M., W. K. Myers, D. L. M. Suess, T. A. Stich, V. Pelmenschikov, S. A. Shiigi, S. P. Cramer, J. R. Swartz, R. D. Britt, and S. J. George (2014) The HydG enzyme generates an Fe(CO)2(CN) synthon in assembly of the FeFe hydrogenase H-cluster. Science. 343: 424–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dinis, P., D. L. M. Suess, S. J. Fox, J. E. Harmer, R. C. Driesener, L. De La Paz, J. R. Swartz, J. W. Essex, R. D. Britt, and P. L. Roach (2015) X-ray crystallographic and EPR spectroscopic analysis of HydG, a maturase in [FeFe]-hydrogenase H-cluster assembly. Proc. Nat. Acad. Sci. USA. 112: 1362–1367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lu, Y., J. P. Welsh, W. Chan, and J. R. Swartz (2013) Escherichia coli-based cell free production of flagellin and ordered flagellin display on virus-like particles. Biotechnol. Bioeng. 110: 2073–2085.

    Article  CAS  PubMed  Google Scholar 

  29. Wuu, J. J. and J. R. Swartz (2008) High yield cell-free production of integral membrane proteins without refolding or detergents. Biochim. Biophys. Acta. 1778: 1237–1250.

    Article  CAS  PubMed  Google Scholar 

  30. Schoborg, J. A., J. M. Hershewe, J. C. Stark, W. Kightlinger, J. E. Kath, T. Jaroentomeechai, A. Natarajan, M. P. DeLisa, and M. C. Jewett (2018) A cell-free platform for rapid synthesis and testing of active oligosaccharyltransferases. Biotechnol. Bioeng. 115: 739–750.

    Article  CAS  PubMed  Google Scholar 

  31. Kolb, V. A., E. V. Makeyev, W. W. Ward, and A. S. Spirin (1996) Synthesis and maturation of green fluorescent protein in a cell-free translation system. Biotechnol. Lett. 18: 1447–1452.

    Article  CAS  Google Scholar 

  32. Kuchenreuther, J. M., S. A. Shiigi, and J. R. Swartz (2014) Cellfree synthesis of the H-Cluster: A model for the in vitro assembly of metalloprotein metal centers. pp. 49–72. In: J. C. Fontecilla-Camps and Y. Nicolet (eds.). Metalloproteins. Humana Press, Totowa, NJ, USA.

    Chapter  Google Scholar 

  33. Oza, J. P., H. R. Aerni, N. L. Pirman, K. W. Barber, C. M. Ter Haar, S. Rogulina, M. B. Amrofell, F. J. Isaacs, J. Rinehart, and M. C. Jewett (2015) Robust production of recombinant phosphoproteins using cell-free protein synthesis. Nat. Commun. 6: 8168.

    Article  PubMed  Google Scholar 

  34. Yang, J. P., T. Cirico, F. Katzen, T. C. Peterson, and W. Kudlicki (2011) Cell-free synthesis of a functional G protein-coupled receptor complexed with nanometer scale bilayer discs. BMC Biotechnol. 11: 57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Young, E. T. (1970) Cell-free synthesis of bacteriophage T4 glucosyl transferase. J. Mol. Biol. 51: 591–604.

    Article  PubMed  Google Scholar 

  36. Min, S. E., K. H. Lee, S. W. Park, T. H. Yoo, C. H. Oh, J. H. Park, S. Y. Yang, Y. S. Kim, and D. M. Kim (2016) Cell-free production and streamlined assay of cytosol-penetrating antibodies. Biotechnol. Bioeng. 113: 2107–2112.

    Article  CAS  PubMed  Google Scholar 

  37. Martin, R. W., N. I. Majewska, C. X. Chen, T. E. Albanetti, R. B. C. Jimenez, A. E. Schmelzer, M. C. Jewett, and V. Roy (2017) Development of a CHO-based cell-free platform for synthesis of active monoclonal antibodies. ACS Synth. Biol. 6: 1370–1379.

    Article  CAS  PubMed  Google Scholar 

  38. Stech, M., O. Nikolaeva, L. Thoring, W. F. M. Stöcklein, D. A. Wüstenhagen, M. Hust, S. Dübel, and S. Kubick (2017) Cell-free synthesis of functional antibodies using a coupled in vitro transcription-translation system based on CHO cell lysates. Sci. Rep. 7: 12030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takeda, H., T. Ogasawara, T. Ozawa, A. Muraguchi, P. J. Jih, R. Morishita, M. Uchigashima, M. Watanabe, T. Fujimoto, T. Iwasaki, Y. Endo, and T. Sawasaki (2015) Production of monoclonal antibodies against GPCR using cell-free synthesized GPCR antigen and biotinylated liposome-based interaction assay. Sci. Rep. 5: 11333.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Koo, J., S. Shiigi, M. Rohovie, K. Mehta, and J. R. Swartz (2016) Characterization of [FeFe] hydrogenase O sensitivity using a new, physiological approach. J. Biol. Chem. 291: 21563–21570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koo, J., T. Schnabel, S. Liong, N. H. Evitt, and J. R. Swartz (2017) High-throughput screening of catalytic H production. Angew. Chem. Int. Ed. Engl. 56: 1012–1016.

    Article  CAS  PubMed  Google Scholar 

  42. Koo, J. and J. R. Swartz (2018) System analysis and improved [FeFe] hydrogenase O tolerance suggest feasibility for photosynthetic H production. Metab. Eng. 49: 21–27.

    Article  CAS  PubMed  Google Scholar 

  43. Liu, C. C. and P. G. Schultz (2010) Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79: 413–444.

    Article  CAS  PubMed  Google Scholar 

  44. Moses, J. E. and A. D. Moorhouse (2007) The growing applications of click chemistry. Chem. Soc. Rev. 36: 1249–1262.

    Article  CAS  PubMed  Google Scholar 

  45. Kolb, H. C., M. G. Finn, and K. G Sharpless (2001) Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40: 2004–2021.

    Article  CAS  PubMed  Google Scholar 

  46. Baskin, J. M., J. A. Prescher, S. T. Laughlin, N. J. Agard, P. V. Chang, I. A. Miller, A. Lo, J. A. Codelli, and C. R. Bertozzi (2007) Copper-free click chemistry for dynamic in vivo imaging. Proc. Nat. Acad. Sci. USA. 104: 16793–16797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, F., W. Niu, J. Guo, and P. G. Schultz (2012) Unnatural amino acid mutagenesis of fluorescent proteins. Angew. Chem. Int. Ed. Engl. 51: 10132–10135.

    Article  CAS  PubMed  Google Scholar 

  48. Wong, H. E., S. P. Pack, and I. Kwon (2016) Positional effects of hydrophobic non-natural amino acid mutagenesis into the surface region of murine dihydrofolate reductase on enzyme properties. Biochem. Eng. J. 109: 1–8.

    Article  CAS  Google Scholar 

  49. Key, H. M., P. Dydio, D. S. Clark, and J. F. Hartwig (2016) Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Nature. 534: 534–537.

    Article  CAS  PubMed  Google Scholar 

  50. Dydio, P., H. M. Key, A. Nazarenko, J. Y. E. Rha, V. Seyedkazemi, D. S. Clark, and J. F. Hartwig (2016) An artificial metalloenzyme with the kinetics of native enzymes. Science. 354: 102–106.

    Article  CAS  PubMed  Google Scholar 

  51. Bailey, J. B., R. H. Subramanian, L. A. Churchfield, and F. A. Tezcan (2016) Metal-directed design of supramolecular protein assemblies. Methods Enzymol. 580: 223–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, P., H. Feng, J. Yang, H. Jiang, H. Zhou, and Y. Lu (2019) Detection of inorganic ions and organic molecules with cell-free biosensing systems. J. Biotechnol. 300: 78–86.

    Article  CAS  PubMed  Google Scholar 

  53. Jang, Y. J., K. H. Lee, T. H. Yoo, and D. M. Kim (2019) Interfacing a personal glucose meter with cell-free protein synthesis for rapid analysis of amino acids. Anal. Chem. 91: 2531–2535.

    Article  CAS  PubMed  Google Scholar 

  54. Byun, J. Y., K. H. Lee, Y. B. Shin, and D. M. Kim (2019) Cascading amplification of immunoassay signal by cell-free expression of firefly luciferase from detection antibody-conjugated DNA in an Escherichia coli extract. ACS Sens. 4: 93–99.

    Article  CAS  PubMed  Google Scholar 

  55. Pardee, K., S. Slomovic, P. Q. Nguyen, J. W. Lee, N. Donghia, D. Burrill, T. Ferrante, F. R. McSorley, Y. Furuta, A. Vernet, M. Lewandowski, C. N. Boddy, N. S. Joshi, and J. J. Collins (2016) Portable, on-demand biomolecular manufacturing. Cell. 167: 248–259.e12.

    Article  CAS  PubMed  Google Scholar 

  56. Luna, J. M., R. D. Rufino, and L. A. Sarubbo (2016) Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process Saf. Environ. Prot. 102: 558–566.

    Article  CAS  Google Scholar 

  57. Park, Y. J., H. J. Choi, and W. H. Joo (2017) Effects of cell-free solutions of probiotic bacteria on putrescine production by food borne-pathogens in ornithine decarboxylase broth. Proceedings of the 2017 KSBB Fall Meeting and International Symposium. October 11–13. Busan, Korea.

  58. Kightlinger, W., K. E. Duncker, A. Ramesh, A. H. Thames, A. Natarajan, J. C. Stark, A. Yang, L. Lin, M. Mrksich, M. P. DeLisa, and M. C. Jewett (2019) A cell-free biosynthesis platform for modular construction of protein glycosylation pathways. Nat. Commun. 10: 5404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Jaroentomeechai, T., J. C. Stark, A. Natarajan, C. J. Glasscock, L. E. Yates, K. J. Hsu, M. Mrksich, M. C. Jewett, and M. P. DeLisa (2018) Single-pot glycoprotein biosynthesis using a cell-free transcription-translation system enriched with glycosylation machinery. Nat. Commun. 9: 2686.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Karim, A. S. and M. C. Jewett (2018) Cell-free synthetic biology for pathway prototyping. Methods Enzymol. 608: 31–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Hongik University new faculty research support fund.

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamin Koo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koo, J., Yang, J. & Park, H. Cell-free Systems: Recent Advances and Future Outlook. Biotechnol Bioproc E 25, 955–961 (2020). https://doi.org/10.1007/s12257-020-0013-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0013-x

Keywords

Navigation