Skip to main content
Log in

Fisetin Inhibits Cell Proliferation and Induces Apoptosis via JAK/STAT3 Signaling Pathways in Human Thyroid TPC 1 Cancer Cells

  • Research Paper
  • Biomedical Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Thyroid cancer is the most important malignant tumor reported in human populations where, its treatment remains undeveloped. Fisetin, a plant flavonoid exhibits several pharmacological properties like antioxidant, anti-inflammatory, and anticancer function. In the existing study, we assessed fisetin mediated cytotoxic effects and action potential of fisetin on cell proliferation in TPC-1 human cancer cells. Also, examined the apoptosis in TPC-1 cells by reactive oxygen species (ROS) generation, the mitochondrial membrane potential (MMP) and apoptotic morphological changes through AO/EtBr staining. Additionally, we analyzed the effects of fisetin through ELISA analysis to evaluate the caspases expression and studied JAK 1 and STAT3 signaling molecule in TPC1 cells. Our results demonstrated that fisetin stimulated apoptosis, which confirmed through reduced cell viability, improved ROS generation, altered MMP and cell cycle phases in TPC-1 cells. Further, the fisetin up-regulated the expression of caspase (3, 8, and 9) expressions in TPC-1 cells. Also, we observed the fisetin down-regulated the JAK 1 and STAT3 expression in TPC1 cells. Thus, the fisetin induced apoptosis in TPC-1 cells by the induction of oxidative damage and enhanced caspases expression by down-regulating JAK 1 and STAT3 signaling molecules. Hence, the fisetin would be considered as a beneficial therapeutic agent for the thyroid cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Konturek, A., M. Barczyński, M. Stopa, and W. Nowak (2016) Trends in prevalence of thyroid cancer over three decades: a retrospective cohort study of 17,526 surgical patients. World J. Surg. 40: 538–544.

    Article  PubMed  Google Scholar 

  2. Morris, L. G., A. G. Sikora, T. D. Tosteson, and L. Davies (2013) The increasing incidence of thyroid cancer: the influence of access to care. Thyroid. 23: 885–891.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu, F. C., H. T. Lin, S. F. Lin, C. F. Kuo, T. T. Chung, and H. P. Yu (2017) Nationwide cohort study on the epidemiology and survival outcomes of thyroid cancer. Oncotarget. 8: 78429–78451.

    PubMed  PubMed Central  Google Scholar 

  4. Albi, E., M. Krüger, R. Hemmersbach, A. Lazzarini, S. Cataldi, M. Codini, T. Beccari, F. S. Ambesi-Impiombato, and F. Curcio (2017) Impact of gravity on thyroid cells. Int. J. Mol. Sci. 18: 972.

    Article  PubMed Central  CAS  Google Scholar 

  5. Liu, Y., L. Su, and H. Xiao (2017) Review of factors related to the thyroid cancer epidemic. Int. J. Endocrinol. 2017: 5308635.

    PubMed  PubMed Central  Google Scholar 

  6. Kashyap, D., V. K. Garg, H. S. Tuli, M. B. Yerer, K. Sak, A. K. Sharma, M. Kumar, V. Aggarwal, and S. S. Sandhu (2019) Fisetin and quercetin: promising flavonoids with chemopreventive potential. Biomolecules. 9: 174.

    Article  CAS  PubMed Central  Google Scholar 

  7. Paschke, R., T. Lincke, S. P. Müller, M. C. Kreissl, H. Dralle, and M. Fassnacht (2015) The treatment of well-differentiated thyroid carcinoma. DtschArztebl. Int. 112: 452–458.

    Google Scholar 

  8. Costa, R., B. A. Carneiro, S. Chandra, S. G. Pai, Y. K. Chae, J. B. Kaplan, H. B. Garrett, M. Agulnik, P. A. Kopp, and F. J. Giles (2016) Spotlight on lenvatinib in the treatment of thyroid cancer: patient selection and perspectives. Drug Des. Devel. Ther. 10: 873–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Giuffrida, D., A. Prestifilippo, A. Scarfia, D. Martino, and S. Marchisotta (2012) New treatment in advanced thyroid cancer. J. Oncol. 2012: 391629.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ciavardelli, D., M. Bellomo, A. Consalvo, C. Crescimanno, and V. Vella (2017) Metabolic alterations of thyroid cancer as potential therapeutic targets. Biomed. Res. Int. 2017: 2545031.

    Google Scholar 

  11. Bousoik, E. and H. Montazeri Aliabadi (2018) “Do we know jack” about JAK? a closer look at JAK/STAT signaling pathway. Front. Oncol. 8: 287.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Song, S., Z. Su, H. Xu, M. Niu, X. Chen, H. Min, B. Zhang, G. Sun, S. Xie, H. Wang, and Q. Gao (2017) Luteolin selectively kills STAT3 highly activated gastric cancer cells through enhancing the binding of STAT3 to SHP-1. Cell Death Dis. 8: e2612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, H. F. and R. Lai (2014) STAT3 in cancer-friend or foe? Cancers (Basel). 6: 1408–1440.

    Article  CAS  Google Scholar 

  14. Groner, B. and V. von Manstein (2017) Jak Stat signaling and cancer: Opportunities, benefits and side effects of targeted inhibition. Mol. Cell Endocrinol. 451: 1–14.

    Article  CAS  PubMed  Google Scholar 

  15. Panche, A. N., A. D. Diwan, and S. R. Chandra (2016) Flavonoids: an overview. J. Nutr. Sci. 5: e47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chahar, M. K., N. Sharma, M. P. Dobhal, and Y. C. Joshi (2011) Flavonoids: A versatile source of anticancer drugs. Pharmacogn. Rev. 5: 1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Batra, P. and A. K. Sharma (2013) Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech. 3: 439–459.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sun, X., X. Ma, Q. Li, Y. Yang, X. Xu, J. Sun, M. Yu, K. Cao, L. Yang, G. Yang, G. Zhang, and X. Wang (2018) Anti-cancer effects of fisetin on mammary carcinoma cells via regulation of the PI3K/Akt/mTOR pathway: In vitro and in vivo studies. Int. J. Mol. Med. 42: 811–820.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Adhami, V. M., D. N. Syed, N. Khan, and H. Mukhtar (2012) Dietary flavonoid fisetin: a novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management. Biochem. Pharmacol. 84: 1277–1281.

    Article  CAS  PubMed  Google Scholar 

  20. Youns, M. and W. Abdel Halim Hegazy (2017) The natural flavonoid fisetin inhibits cellular proliferation of hepatic, colorectal, and pancreatic cancer cells through modulation of multiple signaling pathways. PLoS One. 12: e0169335.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Jia, S., X. Xu, S. Zhou, Y. Chen, G. Ding, and L. Cao (2019) Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways. Cell Death Dis. 10: 142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Han, P., J. W. Li, B. M. Zhang, J. C. Lv, Y. M. Li, X. Y. Gu, Z. W. Yu, Y. H. Jia, X. F. Bai, L. Li, Y. L. Liu, and B. B. Cui (2017) The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling. Mol. Cancer. 16: 9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Deorukhkar, A., N. Ahuja, A. L. Mercado, P. Diagaradjane, U. Raju, N. Patel, P. Mohindra, N. Diep, S. Guha, and S. Krishnan (2015) Zerumbone increases oxidative stress in a thiol-dependent ROS-independent manner to increase DNA damage and sensitize colorectal cancer cells to radiation. Cancer Med. 4: 278–292.

    Article  CAS  PubMed  Google Scholar 

  24. Baskić, D., S. Popović, P. Ristić, and N. N. Arsenijević (2006) Analysis of cycloheximide-induced apoptosis in human leukocytes: Fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide. Cell Biol. Int. 30: 924–932.

    Article  PubMed  CAS  Google Scholar 

  25. Younis, E. (2017) Oncogenesis of thyroid cancer. Asian Pac. J. Cancer Prev. 18: 1191–1199.

    PubMed  PubMed Central  Google Scholar 

  26. Xing, M. (2013) Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer. 13: 184–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yin, F., A. E. Giuliano, and A. J. Van Herle (1999) Growth inhibitory effects of flavonoids in human thyroid cancer cell lines. Thyroid. 9: 369–376.

    Article  CAS  PubMed  Google Scholar 

  28. Mutlu Altundağ, E., T. Kasacı, A. M. Yılmaz, B. Karademir, S. Koçtürk, Y. Taga, and A. S. Yalçın (2016) Quercetin-induced cell death in human papillary thyroid cancer (B-CPAP) cells. J. Thyroid. Res. 2016: 9843675.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wang, J. and S. Huang (2018) Fisetin inhibits the growth and migration in the A549 human lung cancer cell line via the ERK1/ 2 pathway. Exp. Ther. Med. 15: 2667–2673.

    CAS  PubMed  Google Scholar 

  30. Li, Y. S., X. J. Qin, and W. Dai (2017) Fisetin suppresses malignant proliferation in human oral squamous cell carcinoma through inhibition of Met/Src signaling pathways. Am. J. Transl. Res. 9: 5678–5683.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bhat, T. A., D. Nambiar, A. Pal, R. Agarwal, and R. P. Singh (2012) Fisetin inhibits various attributes of angiogenesis in vitro and in vivo—implications for angioprevention. Carcinogenesis. 33: 385–393.

    Article  CAS  PubMed  Google Scholar 

  32. Ravichandran, N., G. Suresh, B. Ramesh, R. Manikandan, Y. W. Choi, and G. Vijaiyan Siva (2014) Fisetin modulates mitochondrial enzymes and apoptotic signals in benzo (a) pyrene-induced lung cancer. Mol. Cell Biochem. 390: 225–234.

    Article  CAS  PubMed  Google Scholar 

  33. Lall, R. K., V. M. Adhami, and H. Mukhtar (2016) Dietary flavonoid fisetin for cancer prevention and treatment. Mol. Nutr. FoodRes. 60: 1396–1405.

    Article  CAS  Google Scholar 

  34. Smith, M. L., K. Murphy, C. D. Doucette, A. L. Greenshields, and D. W. Hoskin (2016) The dietary flavonoid fisetin causes cell cycle arrest, caspase-dependent apoptosis, and enhanced cytotoxicity of chemotherapeutic drugs in triple-negative breast cancer cells. J. Cell Biochem. 117: 1913–1925.

    Article  CAS  PubMed  Google Scholar 

  35. Ying, T. H., S. F. Yang, S. J. Tsai, S. C. Hsieh, Y. C. Huang, D. T. Bau, and Y H. Hsieh (2012) Fisetin induces apoptosis in human cervical cancer HeLa cells through ERK1/2-mediated activation of caspase-8-/caspase-3-dependent pathway. Arch. Toxicol. 86: 263–273.

    Article  CAS  PubMed  Google Scholar 

  36. Wong, R. S. (2011) Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res. 30: 87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abotaleb, M., S. M. Samue, E. Varghese, S. Varghese, P. Kubatka, A. Liskova, and D. Büsselberg (2018) Flavonoids in cancer and apoptosis. Cancers (Basel). 11: 28.

    Article  PubMed Central  CAS  Google Scholar 

  38. Cheng, X., X. Yao, S. Xu, J. Pan, H. Yu, J. Bao, H. Guan, R. Lu, and L. Zhang (2018) Punicalagin induces senescent growth arrest in human papillary thyroid carcinoma BCPAP cells via NF-KB signaling pathway. Biomed. Pharmacother. 103: 490–498.

    Article  CAS  PubMed  Google Scholar 

  39. Jeong, C. H. and S. H. Joo (2016) Downregulation of reactive oxygen species in apoptosis. J. Cancer Prev. 21: 13–20.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Redza-Dutordoir, M. and D. A. Averill-Bates (2016) Activation of apoptosis signaling pathways by reactive oxygen species. Biochim. Biophys. Acta. 1863: 2977–2992.

    Article  CAS  PubMed  Google Scholar 

  41. Raza, M. H., S. Siraj, A. Arshad, U. Waheed, F. Aldakheel, S. Alduraywish, and M. Arshad (2017) ROS-modulated therapeutic approaches in cancer treatment. J. Cancer Res. Clin. Oncol. 143: 1789–1809.

    Article  CAS  PubMed  Google Scholar 

  42. Yu, K., T. Wang, Y. Li, C. Wang, X. Wang, M. Zhang, Y. Xie, S. Li, Z. An, and T. Ye (2017) Niclosamide induces apoptosis through mitochondrial intrinsic pathway and inhibits migration and invasion in human thyroid cancer in vitro. Biomed. Pharmacother. 92: 403–411.

    Article  CAS  PubMed  Google Scholar 

  43. Min, K. J., J. O. Nam, and T. K. Kwon (2017) Fisetin induces apoptosis through p53-mediated up-regulation of DR5 expression in human renal carcinoma Caki cells. Molecules. 22: 1285.

    Article  PubMed Central  CAS  Google Scholar 

  44. Sundarraj, K., A. Raghunath, and E. Perumal (2018) A review on the chemotherapeutic potential of fisetin: In vitro evidences. Biomed. Pharmacother. 97: 928–940.

    Article  CAS  PubMed  Google Scholar 

  45. Ren, H. P., X. Y. Yin, H. Y. Yu, and H. F. Xiao (2017) Stevioside induced cytotoxicity in colon cancer cells via reactive oxygen species and mitogen-activated protein kinase signaling pathways-mediated apoptosis. Oncol. Lett. 13: 2337–2343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chou, H. Y, F. S. Chueh, Y. S. Ma, R. S. Wu, C. L. Liao, Y. L. Chu, M. I. Fan, W. W. Huang, and I. G. Chung (2017) Bufalin induced apoptosis in SCC-4 human tongue cancer cells by decreasing Bcl-2 and increasing Bax expression via the mitochondria-dependent pathway. Mol. Med. Rep. 16: 7959–7966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Luo, G., J. Zhou, G. Li, N. Hu, X. Xia, and H. Zhou (2019) Ferruginol diterpenoid selectively inhibits human thyroid cancer growth by inducing mitochondrial dependent apoptosis, endogenous reactive oxygen species (ROS) production, mitochondrial membrane potential loss and suppression of mitogen-activated protein kinase (MAPK) and PI3K/AKT signaling pathways. Med. Sci. Monit. 25: 2935–2942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Poupei, F., M. Aghaei, A. Movahedian, S. M. Jafari, and M. K. Shahrestanaki (2017) Dihydroartemisinin induces apoptosis in human bladder cancer cell lines through reactive oxygen species, mitochondrial membrane potential, and cytochrome c pathway. Int. J. Prev. Med. 8: 78.

    Article  Google Scholar 

  49. Shahali, A., M. Ghanadian, S. M. Jafari, and M. Aghaei (2018) Mitochondrial and caspase pathways are involved in the induction of apoptosis by nardosinen in MCF-7 breast cancer cell line. Res. Pharm. Sci. 13: 12–21.

    Article  PubMed  PubMed Central  Google Scholar 

  50. John, R. R., N. Malathi, C. Ravindran, and S. Anandan (2017) Mini review: Multifaceted role played by cyclin D1 in tumor behavior. Indian J. Dent. Res. 28: 187–192.

    Article  PubMed  Google Scholar 

  51. Alao, J. P. (2007) The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol. Cancer. 6: 24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Luong, Q. T, J. O'Kelly, G. D. Braunstein, J. M. Hershman, and H. P. Koeffler (2006) Antitumor activity of suberoylanilide hydroxamic acid against thyroid cancer cell lines in vitro and in vivo. Clin. Cancer Res. 12: 5570–5577.

    Article  CAS  PubMed  Google Scholar 

  53. Pencik, J., H. T. Pham, J. Schmoellerl, T. Javaheri, M. Schlederer, Z. Culig, O. Merkel, R. Moriggl, F. Grebien, and L. Kenner (2016) JAK-STAT signaling in cancer: From cytokines to non-coding genome. Cytokine. 87: 26–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ma, Y, T. Karunakaran, V. P. Veeraraghavan, S. K. Mohan, and S. Li (2019) Sesame inhibits cell proliferation and induces apoptosis through inhibition of STAT-3 translocation in thyroid cancer cell lines (FTC-133). Biotechnol. Bioprocess Eng. 24: 646–652.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng Ma.

Additional information

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Kong, D., Zhang, Y. et al. Fisetin Inhibits Cell Proliferation and Induces Apoptosis via JAK/STAT3 Signaling Pathways in Human Thyroid TPC 1 Cancer Cells. Biotechnol Bioproc E 25, 197–205 (2020). https://doi.org/10.1007/s12257-019-0326-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0326-9

Keywords

Navigation