Skip to main content
Log in

Primary liver cell cultures grown on gas permeable membrane as source for the collection of primary bile

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Isolated rat hepatocytes maintained in primary culture on gas permeable membrane for 20 h form monolayers and establish at their cell borders a network of canaliculi (approximate diameter 3.5 μm). In the presence of the known choleretic bile acid dehydrocholate, dilation of canaliculi occurs. When nonfluorescent carboxyfluorescein diacetate ester is added to the culture medium, fluorescent carboxyfluorescein appears in the intracanalicular space. In the dilated state, fluid containing the fluorescent compound could be collected from the canaliculi by puncture with a micropipette. The intracanalicular space shows a negative electrical potential difference of 31 mV in reference to the bath solution and is 13.5 mV more positive with reference to recordings from the cytosol of cultured rat hepatocytes. Cultured rat hepatocytes grown on gas permeable membrane are energetically stable over 3 d. On Day 4, ATP levels increase markedly, whereas Na+−K+-ATPase activity declines. Ionic composition of hepatocytes, as measured by electronprobe element analysis on cryosection samples, does not change markedly during monolayer formation. With formation of bile canaliculi, the activity of alkaline phosphatase rapidly increases within 24 h and is stable for the next 3 d. Within that time the activity of γ-glutamyltranspeptidase, however, increases steadily, reaching a 1.6-fold higher activity than freshly isolated hepatocytes. Bile acids appear in the culture supernatant after 1 d. When unconjugated [14C]cholic acid is added to the cultures the supernatant contains also [14C]tauro- and [14C]glycocholic acid, indicating the preservation of conjugation capacity in these cultures. Total bile acid concentrations in the supernatant increase from 5 to 26 μM on Day 4. The cultures do not secrete α-fetoprotein. Monolayer cultures of hepatocytes in the presence of choleretic bile acids seem to be a suitable model system to collect and to analyze the composition of primary bile. In conjunction with the electrical parameters, it is possible to describe directly properties of bile secretion at the canalicular pole of the intact hepatocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acker, H.; Pietruschka, F.; Zierold, K. Comparative measurement of potassium and chloride with ion-sensitive microelectrodes and X-ray microanalysis in cultured skeletal muscle fibers. In Vitro 21:45–48; 1985.

    CAS  Google Scholar 

  2. Anwer, M. S.; Hegner, D. Role of inorganic electrolytes in bile acid independent canalicular bile function. Am. J. Physiol. 244:G116-G124; 1983.

    PubMed  CAS  Google Scholar 

  3. Ballatori, N.; Jacob, R.; Boyer, J. L. Intrabiliary glutathione hydrolysis. A source of glutamate in bile. J. Biol. Chem. 261:7860–7865; 1986.

    PubMed  CAS  Google Scholar 

  4. Ballatori, N.; Moseley, R. H.; Boyer, J. L. Sodium-gradient dependentl-glutamate transport is localized to the canalicular domain of liver plasma membranes. J. Biol. Chem. 261:6216–6221; 1986.

    PubMed  CAS  Google Scholar 

  5. Bessey, O. A.; Lowry, O. H.; Brock, M. A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. J. Biol. Chem. 164:321–329; 1946.

    CAS  Google Scholar 

  6. Boyer, J. L.; Ng, O. C.; Gautam A. Formation of canalicular spaces in isolated rat hepatocyte couplets. Trans. Assoc. Am. Physicians 98:21–29; 1985.

    PubMed  CAS  Google Scholar 

  7. Brunsgard, A. Quantitative determination of the major 3-hydroxy bile acids in biological material after thin-layer chromatographic separation. Clin. Chim. Acta 28:495–504; 1970.

    Article  Google Scholar 

  8. Edwards, A. M.; Lucas, C. M. Induction of γ-glutamyl transpeptidase in primary cultures of normal rat hepatocytes by liver tumor promotors and structurally related compounds. Carcinogenesis 6:733–739; 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Fitz, J. G.; Scharschmidt, B. F. Intracellular chloride activity in intact rat liver: relationship to membrane potential and bile flow. Am. J. Physiol. 252:G699-G706; 1987.

    PubMed  CAS  Google Scholar 

  10. Gautam, A.; Ng, O. C.; Boyer, J. L. Isolated rat hepatocyte couples in short-term culture: structural characteristics and plasma membrane reorganization. Hepatology 7:216–223; 1987

    Article  PubMed  CAS  Google Scholar 

  11. Graf, J.; Gautam, A.; Boyer, J. L. Isolated hepatocyte couplets. A primary secretory unit for electrophysiologic studies of bile secretory function. Proc. Natl. Acad. Sci. USA 81:6516–6520; 1984.

    Article  PubMed  CAS  Google Scholar 

  12. Graf, J.; Hendersen, R. M.; Krumpholz, B., et al. Cell membrane and transepithelial voltages and resistances in isolated rat hepatocyte couplets. J. Membrane Biol. 95:242–254; 1987.

    Article  Google Scholar 

  13. Hardison, W. G. M.; Wood, G. A. Importance of bicarbonate in bile salt independent fraction of bile flow. Am. J. Physiol. 235:E158-E164; 1978.

    PubMed  CAS  Google Scholar 

  14. Hatoff, D. E.; Hardison, W. G. Bile acids modify alkaline phosphatase induction and bile secretion pressure after bile duct obstruction in the rat. Gastroenterology 80:666–672; 1980.

    Google Scholar 

  15. Heller, P.; van der Kloot, W. Transmembrane potentials in guinea pig hepatocytes. J. Physiol. 243:577–598; 1974.

    PubMed  CAS  Google Scholar 

  16. Hertwig, I.; Hentschel J. Vestibular morphology ofXenopus laevis (Amphibia, Anura) following larval development in zero gravity (D1-mission), Zool. Jb. Anat. Onkol. Tiere (in press).

  17. Horster, M. Hormonal stimulation and differential growth response of renal epithelial cells cultivated in vitro from individual nephron segments. Int. J. Biochem. 12:29–35; 1980.

    Article  PubMed  CAS  Google Scholar 

  18. Iannaccone, P. M.; Koizumi, J. Pattern and rate of disappearance of gamma-glutamyl transpeptidase activity in fetal and neonatal rat liver. J. Histochem. Cytochem. 31:1312–1316; 1983.

    PubMed  CAS  Google Scholar 

  19. Igarashi, T.; Satoh, T.; Aeno, K., et al. Change of gamma-glutamyltranspeptidase activity in the rat during development and comparison of the fetal liver, placental and adult liver enzymes. Life Sci. 29:483–489; 1981.

    Article  PubMed  CAS  Google Scholar 

  20. Jauregui, H. O.; McMillan, P. N.; Driscoll, J., et al. Attachment and long-term survival of adult rat hepatocytes in primary monolayer cultures: comparison of different substrate and tissue culture media formulations. In Vitro 22:13–22; 1986.

    CAS  Google Scholar 

  21. Johannsson, S.; Kjellén, L.; Höök, M., et al. Substrate adhesion of rat hepatocytes: a comparison of laminin and fibronectin as attachment proteins. J. Cell Biol. 90:260–264; 1981.

    Article  Google Scholar 

  22. Mashige, F.; Imai, K.; Osuga, T. A simple and sensitive assay of total serum bile acids. Clin. Chim. Acta 70:79–86; 1976.

    Article  PubMed  CAS  Google Scholar 

  23. McGivan, J. D. Mechanism of the stimulation of serine and alanine transport into isolated rat liver cells by biocarbonate ions. Biochem. J. 182:697–705; 1979.

    PubMed  CAS  Google Scholar 

  24. Meier, P. J.; Knickelbein, R.; Moseley, R. H., et al. Evidence for carrier-mediated chloride/bicarbonate exchange in canalicular rat liver plasma membrane vesicles. J. Clin. Invest. 75:1256–1263; 1985.

    PubMed  CAS  Google Scholar 

  25. Meier, P. J.; Meier-Abt, A. S.; Barrett, C., et al. Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. J. Biol. Chem. 259:10614–10622; 1984.

    PubMed  CAS  Google Scholar 

  26. Mitchell, D. B.; Acosta, D. The effect of culture medium supplements on glutathione levels in primary cultures of postnatal rat hepatocytes. In Vitro 17:243; 1981.

    Google Scholar 

  27. Mitchell, D. B.; Acosta, D.; Bröckner, J. V. Role of glutathione depletion in the cytotoxicity of paracetanol in a primary culture system of rat hepatocytes. Toxicology 37:127–132; 1985.

    Article  PubMed  CAS  Google Scholar 

  28. Neumeier, R.; Reutter, W. Hepatocyte adhesion on plastic. Different mechanisms for serum- and fibronectin-mediated adhesion. Exp. Cell Res. 160:287–296; 1985.

    Article  PubMed  CAS  Google Scholar 

  29. Orlowski, M.; Meister, A. γ-Glutamyl-p-nitroanilide: a new convenient substrate for determination and study ofl- andd-γ-glutamyltranspeptidase activities. Biochim. Biophys. Acta 73:679–681; 1963.

    Article  PubMed  CAS  Google Scholar 

  30. Petzinger, E.; Fischer, K. Transport functions of the liver: lack of correlation between hepatocellualr ouabain uptake and binding to Na+ K+ ATPase. Biochim. Biophys. Acta 815:334–340; 1985.

    Article  PubMed  CAS  Google Scholar 

  31. Petzinger, E.; Seeger, R. Scanning electron microscopic studies on the cytolytic effect of phallolysin on isolated rat hepatocytes and AS-30 D hepatoma cells. Naunyn-Schmiedeberg's Arch. Pharmacol. 295:211–213; 1976.

    CAS  Google Scholar 

  32. Rubin, K. J.; Gullberg, D.; Borg, T. K., et al. Hepatocyte adhesion to collagen. Isolation of membrane glycoproteins involved in adhesion to collagen. Exp. Cell Res. 164:127–138; 1986.

    Article  PubMed  CAS  Google Scholar 

  33. Rubin, K.; Hook, M.; Öbrink, B., et al. Substrate adhesion of rat hepatocytes: mechanism of attachment to collagen substrates. Cell 24:463–470; 1981.

    Article  PubMed  CAS  Google Scholar 

  34. Rutenburg, A. M.; Kim, H.; Fischbein, J. W., et al. Histochemical and ultrastructural demonstration of γ-glutamyl-transpeptidase activity. J. Histochem. Cytochem. 17:517–526; 1969.

    PubMed  CAS  Google Scholar 

  35. Scharschmidt, B. F.; Keeffe, E. B.; Blankenship, N. M., et al. Validation of a recording spectrophotometric method for measurement of membrane-associated Mg- and NaK-ATPase activity. J. Lab. Clin. Med. 93:790–799; 1979.

    PubMed  CAS  Google Scholar 

  36. Scharschmidt, B. F.; van Dyke, R. A. Mechanisms of hepatic electrolyte transport. Gastroenterology 85:1199–1214; 1983.

    PubMed  CAS  Google Scholar 

  37. Schoner, W.; von Ilberg, C.; Kramer, R., et al. On the mechanism of Na+-and K+-stimulated hydrolysis of adenosine triphosphate. Eur. J. Biochem. 1:334–343; 1967.

    Article  PubMed  CAS  Google Scholar 

  38. Sirica, A. E.; Richards, W.; Tsukada, Y., et al. Fetal phenotypic expression by adult rat hepatocytes on collagen gel/nylon meshes. Proc. Natl. Acad. Sci. USA 76:283–287; 1979.

    Article  PubMed  CAS  Google Scholar 

  39. Soboll, S.; Elbers, R.; Scholz, R., et al. Subcellular distribution of di- and tricarboxylates and pH gradients in perfused rat liver. Hoppe-Seyler's Z Physiol. Chem. 361:69–76; 1980.

    CAS  Google Scholar 

  40. Spray, D. C.; Ginzberg, R. D.; Morales, E. A., et al. Electrophysiological properties of gap juntions between dissociated pairs of rat hepatocytes. J. Cell Biol. 103:135–144; 1986.

    Article  PubMed  CAS  Google Scholar 

  41. Van Dyke, R. W.; Stephens, J. E.; Scharschmidt, B. F. Effect of ion substitution on bile acid-dependent and bile acid-independent bile function by the isolated perfused rat liver. J. Clin. Invest. 70:505–517; 1982.

    Article  PubMed  Google Scholar 

  42. Wondergem, R. Transmembrane potential of rat hepatocytes in primary monolayer cultures. Am. J. Physiol. 241:C209-C214; 1981.

    PubMed  CAS  Google Scholar 

  43. Zierold, K. Preparation of cryosections for biological microanalysis. In: Müller, M.; Becker, R. P.; Boyde, A., et al., eds. The science of biological specimen preparation. Chicago, IL: Scanning Electron Microsc. Inc.; 1986: 119–127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft, grant no. PE 250/5-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petzinger, E., Föllmann, W., Acker, H. et al. Primary liver cell cultures grown on gas permeable membrane as source for the collection of primary bile. In Vitro Cell Dev Biol 24, 491–499 (1988). https://doi.org/10.1007/BF02629081

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02629081

Key words

Navigation