Skip to main content
Log in

A Mild Thermal Pre-treatment of the Organic Fraction of Municipal Wastes Allows High Ethanol Production by Direct Solid-state Fermentation

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A solid standard mixture (SSM) representing the annual composition of fresh fruits and vegetables residues generated at the Supply Center in Mexico City was used for bioethanol production. This type of residues allows bioethanol production with a single thermal pre-treatment instead of hard thermochemical or enzymatic treatments. The release of fermentable carbohydrates from the SSM by a mild thermal pretreatment was firstly optimized. After that, mixed and single cultures of Saccharomyces cerevisiae, Scheffersomyces stipitis, and Schwanniomyces occidentalis were evaluated for bioethanol production. The maximum ethanol production, 282.61 ± 13.09 L ethanol per ton of dry matter (DM), was reached using a severity factor (SF) of 2.35 and a mixed culture composed of Saccharomyces cerevisiae, Scheffersomyces stipitis, and Schwanniomyces occidentalis. The improved lab scale conditions were evaluated in a pilot scale (18 Kg) stirred bioreactor with an SF of 2.35 and the mixed culture, obtaining 245.72 ± 17.76 L ethanol per ton DM. The obtained results demonstrate for the first time the use of fresh fruits and vegetables residues for bioethanol production under solid-state culture conditions without any thermochemical or enzymatic pre-treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar Saini, J., R. Saini, and L. Tewari (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. Biotech. 5: 337–353.

    Google Scholar 

  2. Akbas, M. Y. and B. C. Stark (2016) Recent trends in bioethanol production from food processing byproducts. J. Ind. Microbiol. Biotechnol. 43: 1593–1609.

    Article  CAS  PubMed  Google Scholar 

  3. Gupta, A. and J. P. Verma (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sustain Energy Rev. 41: 550–567.

    Article  CAS  Google Scholar 

  4. Ballesteros, M., F. Saez, I. Ballesteros, P. Manzanares, M. J. Negro, J. M. Martinez, R. Castañeda, and J. M. Dominguez (2010) Ethanol production from the organic fraction obtained after thermal pre-treatment of municipal solid waste. Appl. Biochem. Biotechnol. 161: 423–431.

    Article  CAS  PubMed  Google Scholar 

  5. Schmitt, E., R. Bura, R. Gustafson, J. Cooper, and A. Vajzovic (2012) Converting lignocellulosic solid waste into ethanol for the State of Washington: an investigation of treatment technologies and environmental impacts. Bioresour. Technol. 104: 400–409.

    Article  CAS  PubMed  Google Scholar 

  6. Martínez-Valdez, F., C. Martínez-Ramírez, L. Martínez-Montiel, E. Favela-Torres, N. Soto-Cruz, F. Ramírez-Vives, and G. Saucedo-Castañeda (2015) Rapid mineralisation of the organic fraction of municipal solid waste. Bioresour. Technol. 180: 112–118.

    Article  CAS  PubMed  Google Scholar 

  7. Uçkun Kiran, E., A. P. Trzcinski, W. Jern Ng, and Y. Liu (2014) Bioconversion of food waste to energy: a review. Fuel. 134: 389–399.

    Article  CAS  Google Scholar 

  8. Schimer-Michel, A., S. Flores, P. Hertz, G. Matos, and M. Ayub (2008) Production of ethanol from soybean hull hydrolysate by osmotolerant Candida guilliermondii NRRL Y-2075. Bioresour. Technol. 99: 2898–2904.

    Article  CAS  Google Scholar 

  9. Cesaro, A. and V. Belgiorno (2014) Pre-treatment methods to improve anaerobic biodegradability of organic municipal solid waste fractions. Chem. Eng. J. 240: 24–37.

    Article  CAS  Google Scholar 

  10. Li, A., B. Antizar-Ladislao, and M. Khraisheh (2007) Bioconversion of municipal solid waste to glucose for bio-ethanol production. Bioprocess Biosyst. Eng. 30: 189–196.

    Article  CAS  PubMed  Google Scholar 

  11. Palmqvist, E., J. Almeida, and B. Hahn-Hägerdal (1999) Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol. Bioeng. 62: 447–454.

    Article  CAS  PubMed  Google Scholar 

  12. Taherzadeh, M. J., L. Gustafsson, C. Niklasson, and G. Lidén (2000) Physiological effects of 5-hydroxymethyl furfural on Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 53: 701–708.

    Article  CAS  PubMed  Google Scholar 

  13. Negro, M. J., C. Alvarez, I. Ballesteros, I. Romero, M. Ballesteros, E. Castro, P. Manzanares, M. Moya, and J. M. Oliva (2014) Ethanol production from glucose and xylose obtained from steam exploded water-extracted olive tree pruning using phosphoric and as catalyst. Bioresour. Technol. 153: 101–107.

    Article  CAS  PubMed  Google Scholar 

  14. Zhi-Min, Z., W. Lan, and C. Hong-Zhang (2015) A novel steam explosion sterilization improving solid-state fermentation performance. Bioresour. Technol. 192: 547–555.

    Article  CAS  Google Scholar 

  15. Pandey, A. (2003) Solid-state fermentation. Biochem. Eng J. 13: 81–84.

    Article  CAS  Google Scholar 

  16. Kuhad, R. C., R. Gupta, Y. P. Khasa, A. Singh, and Y. H. P. Zhang (2011) Bioethanol production from pentose sugars: current status and future prospects. Renew. Sustain Energy Rev. 15: 4950–4962.

    Article  CAS  Google Scholar 

  17. Tang, Y-Q., Y. Koike, K. Liu, M-Z. An, S. Morimura, X-L. Wu, and K. Kida (2008) Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Biomass Bioenerg. 32: 1037–1045.

    Article  CAS  Google Scholar 

  18. Jeong, S., Y. Kim, and D. Lee (2012) Ethanol production by co-fermentation of hexose and pentose from food wastes using Saccharomyces coreanus and Pichia stipitis. Korean J. Chem. Eng. 29: 1038–1043.

    Article  CAS  Google Scholar 

  19. Bader, J., E. Mast-Gerlach, M. K. Popovic, R. Bajpai, and U. Stahl (2010) Relevance of microbial coculture fermentations in biotechnology. J. Appl. Microbiol. 109: 371–387.

    Article  CAS  PubMed  Google Scholar 

  20. Saucedo-Castañeda, G., B. K. Lonsane, J. M. Navarro, S. Roussos, and M. Raimbault (1992) Potential of using a single fermenter for biomass build-up, starch hydrolysis, and ethanol production. Appl. Biochem. Biotechnol. 36: 47–61.

    Article  Google Scholar 

  21. Arora, S., R. Rani, and S. Ghosh (2008) Bioreactors in solid state fermentation technology: Design, applications and engineering aspects: A review. J. Biotechnol. 269: 16–34.

    Article  CAS  Google Scholar 

  22. Pandey, A. (1991) Aspects of fermenter design for solid state fermentations. Process Biochem. 26: 355–361.

    Article  CAS  Google Scholar 

  23. Nava, I., I. Gaime-Perraud, S. Huerta-Ochoa, E. Favela-Torres, and G. Saucedo-Castañeda (2006) Penicillium commune spore production in solid-state fermentation of coffee pulp at laboratory scale and in a helical ribbon rotating reactor. J. Chem. Technol. Biotechnol. 81: 1760–1766.

    Article  CAS  Google Scholar 

  24. Diaz-Campillo, M., N. Urtíz, Ó. Soto, E. Barrio, M. Rutiaga, and J. Páez (2012) Effect of glucose concentration on the rate of fructose consumption in native strains isolated from the fermentation of Agave duranguensis. World J. Microbiol. Biotechnol. 28: 3387–3391.

    Article  CAS  PubMed  Google Scholar 

  25. Overend, R. P., E. Chornet, and J. A. Gascoigne (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments. Phil. Trans. R Soc. A. 321: 523–536.

    Article  CAS  Google Scholar 

  26. Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Croker (2011) Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510-42618. National Renewable Energy Laboratory. Golden, USA.

    Google Scholar 

  27. Sluiter, A., B. Hames, D. Hyman, C. Payne, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and J. Wolfe (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. Technical Report NREL/TP-510-42621. National Renewable Energy Laboratory. Golden, USA.

    Google Scholar 

  28. Bradley, R. L. Jr. (2010) Moisture and total solids analysis. pp. 17–27. In: Nielsen, S. S. (ed.) Food analysis, 4th edn. Springer, New York.

    Google Scholar 

  29. Saucedo-Castañeda, G., M. R. Trejo-Hernández, B. K. Lonsane, J. M. Navarro, S. Roussos, D. Dufour, and M. Raimbault (1994) On-line automated monitoring and control systems for CO2 and O2 in aerobic and anaerobic solid-state fermentation. Process Biochem. 29: 13–24.

    Article  Google Scholar 

  30. Levenspiel, O. (1999) Chemical Reaction Engineering. 3rd edn. pp. 4140–4143. Wiley, New York.

    Google Scholar 

  31. Uçkun Kiran, E. and Y. Liu (2015) Bioethanol production from mixed food waste by and effective enzymatic pre-treatment. Fuel. 159: 463–469.

    Article  CAS  Google Scholar 

  32. Maiorella, B., H. W. Blanch, and C. R. Wilke (1983) By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotech. Bioeng. 25: 103–121.

    Article  CAS  Google Scholar 

  33. Bellido, C., S. Bolado, M. Coca, G. Gonzalez-Benito, and M. T. García-Cubero (2011) Effect of inhibitors formed during wheat straw pre-treatment on ethanol fermentation by Pichia stipitis. Bioresour Technol. 102: 10868–10874.

    Article  CAS  PubMed  Google Scholar 

  34. Horn, C. H., J. C. du Preez, and S. G. Kilian (1992) Fermentation of grain sorghum starch by co-cultivation of Schwanniomyces occidentalis and Saccharomyces cerevisiae. Bioresour Technol. 42: 27–31.

    Article  CAS  Google Scholar 

  35. Kim, J. K., B. R. Oh, H.-J. Shin, C.-Y. Eom, and S. W. Kim (2008) Statistical optimization of enzymatic saccharification and ethanol fermentation using food waste. Process Biochem. 43: 1308–1312.

    Article  CAS  Google Scholar 

  36. Wang, Q., H. Ma, W. Xu, L. Gong, W. Zhang, and D. Zou (2008) Ethanol production from kitchen garbage using response surface methodology. Biochem Eng J. 39 (3): 604–610.

    Article  CAS  Google Scholar 

  37. Uncu, O. N. and D. Cekmecelioglu (2011) Cost-effective approach to ethanol production and optimization by response surface methodology. Waste Manage. 31 (4): 636–643.

    Article  CAS  Google Scholar 

  38. Boluda-Aguilar, M. and A. López-Gómez (2013) Production of bioethanol by fermentation of lemon (Citrus limon L.) peel wastes pre-treated with steam explosion. Ind Crop Prod. 41: 188–197.

    Article  CAS  Google Scholar 

  39. Canabarro, N., C. Alessio, E. Foletto, R. Kuhn, W. Priamo, and M. Mazutti (2017) Ethanol production by solid-state saccharification and fermentation in a packed-bed bioreactor. Renew Energy. 102: 9–14.

    Article  CAS  Google Scholar 

  40. Salemdeeb, R., E. K. H. J. zu Ermgassen, M. H. Kim, A. Balmford, and A. Al-Tabbaa (2017) Environmental and health impacts of using food waste as animal feed: a comparative analysis of food waste management options. J Clean Prod. 140: 871–880.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mazaheri, D., S. A. Shojaosadati, P. Hejazi, and S. M. Mousavi (2015) Bioethanol production performance in a packed bed solid-state fermenter: evaluation of operational factors and intermittent aeration strategies. Ann Microbiol. 65: 351–357.

    Article  CAS  Google Scholar 

  42. Jeong, H., Y-C. Park, Y-J. Seong, and S. M. Lee (2018) Sugar and ethanol production from woody biomass via supercritical water hydrolysis in a continuous pilot-scale system using acid catalyst. Bioresour Technol. 245: 351–357.

    Article  CAS  Google Scholar 

  43. Li, S., G. Li, L. Zhang, Z. Zhou, B. Han, W. Hou, J. Wang, and T. Li (2013) A demonstration study of ethanol production from sweet sorghum stems with advanced solid state fermentation technology. Appl Energ. 102: 260–265.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CONACYT, Mexico, for the research funding of PDCPN-2013/215467, and RJEM acknowledges the PhD scholarship (No. 265441) from CONACYT, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Saucedo-Castañeda.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estrada-Martínez, R., Favela-Torres, E., Soto-Cruz, N.O. et al. A Mild Thermal Pre-treatment of the Organic Fraction of Municipal Wastes Allows High Ethanol Production by Direct Solid-state Fermentation. Biotechnol Bioproc E 24, 401–412 (2019). https://doi.org/10.1007/s12257-019-0032-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0032-7

Keywords

Navigation