Skip to main content
Log in

Hydrogen and volatile fatty acids production from marine macroalgae by anaerobic fermentation

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Hydrogen and volatile fatty acids (VFAs) were coproduced from marine macroalgae by anaerobic fermentation using a microbial community. The hydrogen and VFAs production were characterized based on inoculum heat-treatment, methanogen inhibitor addition, operating temperature, and in-situ extraction of VFAs. Maximum hydrogen of 179 mL/g-VS and VFAs concentration of 9.8 g/L were produced from 35 g/L of S. japonica within 5 days of anaerobic fermentation. Hydrogen and VFAs yields were well-correlated with carbohydrate content of substrate. Inoculum heat-treatment significantly improved hydrogen production while the VFAs productivity was affected adversely. The addition of methanogen inhibitors also enhanced the hydrogen production, but the effect on VFAs production was dependent on the type of inhibitor used. Low temperature (25°C) was found to be favorable for high hydrogen and VFAs yield, while high temperature (40°C) and programmed-temperature (35 ~ 45°C) were more favorable for hydrogen and VFAs productivity. Clostridium sp. content was found to be the most abundant at 25°C. An extractive fermentation with anion-exchange resin was tested to recover the VFAs and to control the pH during the anaerobic fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roesijadi, G., S. B. Jones, L. J. Snowden-Swan, and Y. Zhu (2010) Macroalgae as a biomass feedstock: A Preliminary Analysis. U.S DOE, PNNL-19944.

    Book  Google Scholar 

  2. Milledge, J. J., B. Smith, P. W. Dyer, and P. Harvey (2014) Macroalgae-derived biofuel: A review of methods of energy extraction from seaweed biomass. Energies. 7: 7194–7222.

    Article  CAS  Google Scholar 

  3. Chung, I. K., J. Beardall, S. Mehta, D. Sahoo, and S. Stojkovic (2011) Using marine macroalgae for carbon sequestration: A critical appraisal. J. Appl. Phycol. 23: 877–886.

    Article  CAS  Google Scholar 

  4. Georgianna, D. R. and S. P. Mayfield (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488: 329–335.

    Article  CAS  Google Scholar 

  5. Wei, N., J. Quarterman, and Y. S. Jin (2013) Marine macroalgae: An untapped resource for producing fuels and chemicals. Trends Biotechnol. 31: 70–77.

    Article  CAS  Google Scholar 

  6. Demirbas, A. (2010) Use of algae as biofuel sources. Energ. Convers. Manage. 51: 2738–2749.

    Article  CAS  Google Scholar 

  7. Vergara-Fernández, A., G. Vargas, N. Alarcón, and A. Velasco (2008) Evaluation of marine algae as a source of biogas in a twostage anaerobic reactor system. Biomass Bioenerg. 32: 338–344.

    Article  Google Scholar 

  8. Su, H., J. Cheng, J. Zhou, W. Song, and K. Cen (2010) Hydrogen production from water hyacinth through dark-and photofermentation. Int. J. Hydrogen Energ. 35: 8929–8937.

    Article  CAS  Google Scholar 

  9. Borines, M. G., R. L. de Leon, and M. P. McHenry (2011) Bioethanol production from farming non-food macroalgae in Pacific island nations: Chemical constituents, bioethanol yields, and prospective species in the Philippines. Renew. Sust. Energ. Rev. 15: 4432–4435.

    Article  CAS  Google Scholar 

  10. Bae, Y. J., C. Ryu, J. K. Jeon, J. Park, D. J. Suh, Y. W. Suh, D. Chang, and Y. K. Park (2011) The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae. Bioresour. Technol. 102: 3512–3520.

    Article  CAS  Google Scholar 

  11. Chang, H. N., N. J. Kim, J. Kang, and C. M. Jeong (2010) Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnol. Bioproc. Eng. 15: 1–10.

    Article  CAS  Google Scholar 

  12. Pham, T. N., W. J. Nam, Y. J. Jeon, and H. H. Yoon (2012) Volatile fatty acids production from marine macroalgae by anaerobic fermentation. Bioresour. Technol. 124: 500–503.

    Article  CAS  Google Scholar 

  13. Holtzapple, M. T. and C. B. Granda (2009) Carboxylate platform: The MixAlco process part1: Comparison of three biomass conversion platforms. Appl. Biochem. Biotech. 156: 95–106.

    Article  Google Scholar 

  14. Steinbusch, K. J. J., H. V. M. Hamelers, C. M. Plugge, and C. J. N. Buisman (2011) Biological formation of caproate and caprylate from acetate: Fuel and chemical production from low grade biomass. Energy. Environ. Sci. 4: 216–224.

    Article  CAS  Google Scholar 

  15. Jung, J., J. Cho, K. Kim, and E. Kwon (2016) Pseudo catalytic transformation of volatile fatty acids into fatty acid methyl esters. Bioresour. Technol. 203: 26–31.

    Article  CAS  Google Scholar 

  16. Lee, W. S., A. S. M Chua, H. K. Yeoh, and G. C. Ngoh (2014) A review of the production and applications of waste-derived volatile fatty acids. Chem. Eng. J. 235: 83–99.

    Article  CAS  Google Scholar 

  17. Fei, Q., H. N. Chang, L. Shang, J. Choi, N. Kim, and J. Kang (2011) The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresour. Technol. 102: 2695–2701.

    Article  CAS  Google Scholar 

  18. Chen, Y., J. Cheng, and K. Creamer (2008) Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 99: 4044–4064.

    Article  CAS  Google Scholar 

  19. Wang, J. and W. Wan (2008) Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge. Int. J. Hydrogen. Energ. 33: 2934–2941.

    Article  CAS  Google Scholar 

  20. Logan, B. E., S. E. Oh, I. S. Kim, and S. V. Ginkel (2002) Biological hydrogen production measured in batch anaerobic respirometers. Environ. Sci. Techno. 36: 2530–2535.

    Article  CAS  Google Scholar 

  21. Analytical Methods of Korean Food Standards Codex (2011) Lipd analysis with acid decomposition, 10-1.1.5.2, Total nitrogen and crude protein. 10-1.1.3.1.

    Google Scholar 

  22. Pakarinen, A., M. Kymalainen, F. L. Stoddard, and L. Viikari (2012) Conversion of carbohydrates in herbaceous crops during anaerobic digestion. J. Agric. Food Chem. 60: 7934–7940.

    Article  CAS  Google Scholar 

  23. Xia, A., A. Jacob, M. R. Tabassum, C. Herrmann, and J. D. Murphy (2016) Production of hydrogen, ethanol and volatile fatty acids through Co-fermentation of macro-and micro-algae. Bioresour. Technol. 205: 118–125.

    Article  CAS  Google Scholar 

  24. Chen, Y., J. Cheng, and K. Creamer (2008) Inhibition of anaerobic digestion process: A review. Bioresour.Technol. 99: 4044–4064.

    Article  CAS  Google Scholar 

  25. Chae, K. J., M. J. Choi, J. W. Lee, K. Y. Kim, and I. N. Kim (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour. Technol. 100: 3518–3525.

    Article  CAS  Google Scholar 

  26. Infantes, D., A. D. Campo, J. Villasenor, and F. J. Fernandez (2011) Influence of pH, temperature and volatile fatty acids on hydrogen production by acidogenic fermentation. Int. J. Hydrogen Energ. 36: 15595–15601.

    Article  CAS  Google Scholar 

  27. Gadhamshetty, V., D. C. Johnson, N. Nirmalakhandan, G. B. Smith, and S. Deng (2009) Feasibility of biohydrogen production at low temperatures in unbuffered reactors. Int. J. Hydrogen Energ. 34: 1233–1243.

    Article  CAS  Google Scholar 

  28. Zhang, Y. and J. Shen (2006) Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria. Int. J. Hydrogen Energ. 31: 441–446.

    Article  CAS  Google Scholar 

  29. Shin, H. S., J. H. Youn, and S. H. Kim (2004) Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int. J. Hydrogen Energ. 29: 1355–1363.

    Article  CAS  Google Scholar 

  30. Lay, J. J. (2000) Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol. Bioeng. 68: 269–278.

    Article  CAS  Google Scholar 

  31. Lin, C. Y. and R. C. Chang (1999) Hydrogen production during the anaerobic acidogenic conversion of glucose. J. Chem. Technol. Biotechnol. 74: 498–500.

    Article  CAS  Google Scholar 

  32. Hawkes, F. R., R. Dinsdale, D. L. Hawkes, and I. Hussy (2002) Sustainable fermentative hydrogen production: Challenges for process optimisation. Int. J. Hydrogen Energ. 27: 1339.

    Article  CAS  Google Scholar 

  33. Wan, C., M. Du, D. J. Lee, X. Yang, W. Ma, and L. Zheng (2011) Electrokinetic remediation and microbial community shift of β-cyclodextrin-dissolved petroleum hydrocarbon-contaminated soil. Appl. Microbiol. Biotechnol. 89: 2019–2025.

    Article  CAS  Google Scholar 

  34. Jung, K., W. Kim, G. W. Park, C. Seo, H. N. Chang, and Y. C. Kim (2015) Optimization of volatile fatty acids and hydrogen production from Saccharina japonica: Acidogenesis and molecular analysis of the resulting microbial communities. Appl. Microbiol. Biot. 9: 3327–3337.

    Article  Google Scholar 

  35. Liu, H. and G. Wang (2014) Fermentative hydrogen production from macroalgae Laminaria japonica using anaerobic mixed bacteria. Int. J. Hydrogen. Energ. 39: 9012–9017.

    Article  CAS  Google Scholar 

  36. Huang, C., T. Xu, Y. Zhang, Y. Xue, and G. Chen (2007) Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments. J. Memb. Sci. 288: 1–12.

    Article  CAS  Google Scholar 

  37. Costa, C. L. L. C. and A. C. Badino (2015) Overproduction of clavulanic acid by extractive fermentation. Electron. J. Biotechnol. 18: 154–160.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyon Hee Yoon.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kidanu, W.G., Trang, P.T. & Yoon, H.H. Hydrogen and volatile fatty acids production from marine macroalgae by anaerobic fermentation. Biotechnol Bioproc E 22, 612–619 (2017). https://doi.org/10.1007/s12257-017-0258-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0258-1

Keywords

Navigation