Skip to main content
Log in

Mild pretreatment of yellow poplar biomass using sequential dilute acid and enzymatically-generated peracetic acid to enhance cellulase accessibility

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Biomass contains cellulose, xylan and lignin in a complex interwoven structure that hinders enzymatic hydrolysis of the cellulose. To separate these components in yellow poplar biomass, we sequentially pretreated with dilute sulfuric acid and enzymatically-generated peracetic acid. In the first step, the dilute acid with microwave heating (140°C, 5 min) hydrolyzed 90% of xylan. The xylose yield in hydrolysate after dilute acid pretreatment was 83.1%. In the second step, peracetic acid (60°C, 6 h) removed up to 80% of lignin. This sequential pretreatment fractionated biomass into xylan and lignin, leaving a solid residue enriched in cellulose (~80%). The sequential pretreatment enhanced enzymatic digestibility of the cellulase by removal of the other components in biomass. The glucose yield after enzymatic hydrolysis was 90.5% at a low cellulase loading (5 FPU/g of glucan), which is 1.6 and 18 times higher than for dilute acid-pretreated biomass and raw biomass, respectively. This novel sequential pretreatment with dilute acid and peracetic acid efficiently separates the three major components of yellow poplar biomass, and reduces the amount of cellulase needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Himmel, M. E., S.-Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J. W. Brady, and T. D. Foust (2007) Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Sci. 315: 804–807.

    Article  CAS  Google Scholar 

  2. Ragauskas, A. J., C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick, J. P. Hallett, D. J. Leak, and C. L. Liotta (2006) The path forward for biofuels and biomaterials. Sci. 311: 484–489.

    Article  CAS  Google Scholar 

  3. Pu, Y., F. Hu, F. Huang, B. H. Davison, and A. J. Ragauskas (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol. Biofuels 6: 1.

    Article  Google Scholar 

  4. Zhao, X., L. Zhang, and D. Liu (2012) Biomass recalcitrance. Part I: The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod. Biorefin. 6: 465–482.

    Article  CAS  Google Scholar 

  5. Chandra, R. P., R. Bura, W. Mabee, D. A. Berlin, X. Pan, and J. Saddler (2007) Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? Adv. Biochem. Eng. Biotechnol. 108: 67–93.

    CAS  Google Scholar 

  6. Pu, Y., M. Kosa, U. C. Kalluri, G. A. Tuskan, and A. J. Ragauskas (2011) Challenges of the utilization of wood polymers: how can they be overcome? Appl. Microbiol. Biotechnol. 91: 1525–1536.

    Article  CAS  Google Scholar 

  7. Yang, B., and C. E. Wyman (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod. Biorefin. 2: 26–40.

    Article  CAS  Google Scholar 

  8. Hsu, T.-C., G.-L. Guo, W.-H. Chen, and W.-S. Hwang (2010) Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour. Technol. 101: 4907–4913.

    Article  CAS  Google Scholar 

  9. Marcotullio, G., E. Krisanti, J. Giuntoli, and W. de Jong (2011) Selective production of hemicellulose-derived carbohydrates from wheat straw using dilute HCl or FeCl3 solutions under mild conditions. X-ray and thermo-gravimetric analysis of the solid residues. Bioresour. Technol. 102: 5917–5923.

    Article  CAS  Google Scholar 

  10. Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Lee, M. Holtzapple, and M. Ladisch (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96: 673–686.

    Article  CAS  Google Scholar 

  11. Klinke, H. B., A. B. Thomsen, and B. K. Ahring (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 66: 10–26.

    Article  CAS  Google Scholar 

  12. Sun, R., J. Tomkinson, W. Zhu, and S. Wang (2000) Delignification of maize stems by peroxymonosulfuric acid, peroxyformic acid, peracetic acid, and hydrogen peroxide. 1. Physicochemical and structural characterization of the solubilized lignins. J. Agric. Food. Chem. 48: 1253–1262.

    Article  CAS  Google Scholar 

  13. Zhao, X.-B., L. Wang, and D.-H. Liu (2007) Effect of several factors on peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis. J. Chem. Technol. Biotechnol. 82: 1115–1121.

    Article  CAS  Google Scholar 

  14. Duncan, S., Q. Jing, A. Katona, R. J. Kazlauskas, J. Schilling, U. Tschirner, and W. W. Aldajani (2010) Increased saccharification yields from aspen biomass upon treatment with enzymatically generated peracetic acid. Appl. Biochem. Biotechnol. 160: 1637–1652.

    Article  CAS  Google Scholar 

  15. Yin, D. T., Q. Jing, W. W. AlDajani, S. Duncan, U. Tschirner, J. Schilling, and R. J. Kazlauskas (2011) Improved pretreatment of lignocellulosic biomass using enzymatically-generated peracetic acid. Bioresour. Technol. 102: 5183–5192.

    Article  CAS  Google Scholar 

  16. Vinnerås, B., A. Holmqvist, E. Bagge, A. Albihn, and H. Jönsson (2003) The potential for disinfection of separated faecal matter by urea and by peracetic acid for hygienic nutrient recycling. Bioresour. Technol. 89: 155–161.

    Article  Google Scholar 

  17. Kim, H.-Y., J.-W. Lee, T. W. Jeffries, and I.-G. Choi (2011) Response surface optimization of oxalic acid pretreatment of yellow poplar (Liriodendron tulipifera) for production of glucose and xylose monosaccarides. Bioresour. Technol. 102: 1440–1446.

    Article  CAS  Google Scholar 

  18. Myint, A. A., D. S. Kim, H. W. Lee, J. Yoon, I. G. Choi, J. W. Choi, and Y. W. Lee (2013) Impact of bleaching on subcritical water-and Formosolv-pretreated tulip tree to enhance enzyme accessibility. Bioresour. Technol. 145: 128–132.

    Article  CAS  Google Scholar 

  19. Selig, M., N. Weiss, and Y. Ji (2008) Enzymatic Saccharification of Lignocellulosic Biomass: Laboratory Analytical Procedure (LAP): Golden: National Renewable Energy Laboratory.

    Google Scholar 

  20. Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker (2011) Determination of structural carbohydrates and lignin in biomass: Laboratory Analytical Procedure (LAP) Golden: National Renewable Energy Laboratory.

    Google Scholar 

  21. Segal, L., J. Creely, A. Martin, and C. Conrad (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29: 786–794.

    Article  CAS  Google Scholar 

  22. Chum, H. L., D. K. Johnson, S. K. Black, and R. P. Overend (1990) Pretreatment-catalyst effects and the combined severity parameter. Appl. Biochem. Biotechnol. 24: 1–14.

    Article  Google Scholar 

  23. Hendriks, A. and G. Zeeman (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100: 10–18.

    Article  CAS  Google Scholar 

  24. Larsson, S., E. Palmqvist, B. Hahn-Hägerdal, C. Tengborg, K. Stenberg, G. Zacchi, and N.-O. Nilvebrant (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enz. Microb. Technol. 24: 151–159.

    Article  CAS  Google Scholar 

  25. Selig, M. J., S. Viamajala, S. R. Decker, M. P. Tucker, M. E. Himmel, and T. B. Vinzant (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol. Prog. 23: 1333–1339.

    Article  CAS  Google Scholar 

  26. Li, J., G. Henriksson, and G. Gellerstedt (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour. Technol. 98: 3061–3068.

    Article  CAS  Google Scholar 

  27. Kumar, L., V. Arantes, R. Chandra, and J. Saddler (2012) The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour. Technol. 103: 201–208.

    Article  CAS  Google Scholar 

  28. Rezende, C. A., M. A. de Lima, P. Maziero, E. Ribeiro deAzevedo, W. Garcia, and I. Polikarpov (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol. Biofuels 4: 1.

    Article  Google Scholar 

  29. Millati, R., C. Niklasson, and M. J. Taherzadeh (2002) Effect of pH, time and temperature of overliming on detoxification of dilute-acid hydrolyzates for fermentation by Saccharomyces cerevisiae. Proc. Biochem. 38: 515–522.

    Article  CAS  Google Scholar 

  30. Garrote, G., H. Dominguez, and J. Parajo (2001) Study on the deacetylation of hemicelluloses during the hydrothermal processing of Eucalyptus wood. Holz. Roh-. Werkst. 59: 53–59.

    Article  CAS  Google Scholar 

  31. Zhu, L., J. P. O’Dwyer, V. S. Chang, C. B. Granda, and M. T. Holtzapple (2008) Structural features affecting biomass enzymatic digestibility. Bioresour. Technol. 99: 3817–3828.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Romas J. Kazlauskas or Tai Hyun Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.R., Kazlauskas, R.J. & Park, T.H. Mild pretreatment of yellow poplar biomass using sequential dilute acid and enzymatically-generated peracetic acid to enhance cellulase accessibility. Biotechnol Bioproc E 22, 405–412 (2017). https://doi.org/10.1007/s12257-017-0139-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0139-7

Keywords

Navigation