Skip to main content
Log in

Methane hydroxylation by Methylosinus trichosporium OB3b: Monitoring the biocatalyst activity for methanol production optimization in an innovative membrane bioreactor

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A quasi-total loss of the bacterial hydroxylating activity was identified to be responsible for methanol production stop. Different strategies acting on the reaction mixture were implemented to apprehend the biocatalyst behavior in view to extend methanol production. Activity monitoring showed first that sodium formate addition did not maintain the biocatalyst activity and even disrupted bacterial equilibrium when added into the reaction mixture with still active biocatalysts. Reaction medium renewals had no influence on methanol production and highlighted a limited hydroxylating potential of the biocatalyst while addition of fresh biocatalysts in the reaction mixture resulted in methanol consumption. Finally, performing hydroxylation directly in the native bacterial culture appeared as a way to enhance methanol production by both release of intracellular methanol accumulated in the cells during cultivation and effective production by methane hydroxylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aratani, Y., Y. Yamada, and S. Fukuzumi (2015) Selective hydroxylation of benzene derivatives and alkanes with hydrogen peroxide catalysed by a manganese complex incorporated into mesoporous silica-alumina. Chem. Commun. 51: 4662–4665.

    Article  CAS  Google Scholar 

  2. Sivaramakrishna, A., P. Suman, E. V. Goud, S. Janardan, C. Sravani, C. S. Yadav, and H. S. Clayton (2012) Recent progress in oxidation of n-alkanes by heterogeneous catalysis. Res. Rev. Mat. Sci. Chem. 1: 75–103.

    Google Scholar 

  3. Park, D. H. and J. Lee (2013) Biological conversion of methane to methanol. Kor. J. Chem. Eng. 30: 977–987.

    Article  CAS  Google Scholar 

  4. Rojo, F. (2009) Degradation of alkanes by bacteria. Environ. Microbiol. 11: 2477–2490.

    Article  CAS  Google Scholar 

  5. Lieberman, R. L. and A. C. Rosenzweig (2004) Biological methane oxidation: Regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit. Rev. Biochem. Mol. Biol. 39: 147–164.

    Article  CAS  Google Scholar 

  6. Anthony, C. (1986) Bacterial oxidation of methane and methanol. Adv. Microbial. Physiol. 27: 113–210.

    Article  CAS  Google Scholar 

  7. Kim, H. G., G. H. Han, and S. W. Kim (2010) Optimization of lab scale methanol production by Methylosinus trichosporium OB3b. Biotechnol. Bioproc. Eng. 15: 476–480.

    Article  CAS  Google Scholar 

  8. Lee, S. G., J. H. Goo, H. G. Kim, J. I. Oh, Y. M. Kim, and S. W. Kim (2004) Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b. Biotechnol. Lett. 26: 947–950.

    Article  CAS  Google Scholar 

  9. Duan, C., M. Luo, and X. Xing (2011) High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour. Technol. 102: 7349–7353.

    Article  CAS  Google Scholar 

  10. Mehta, P. K., S. Mishra, and T. K. Ghose (1991) Methanol biosynthesis by covalently immobilized cells of Methylosinus trichosporium: Batch and continuous studies. Biotechnol. Bioeng. 37: 551–556.

    Article  CAS  Google Scholar 

  11. Mehta, P. K., S. Mishra, and T. K. Ghose (1987) Methanol accumulation by resting cells of Methylosinus-trichosporium (I). J. Gen. Appl. Microbiol. 33: 221–229.

    Article  CAS  Google Scholar 

  12. Furuto, T., M. Takeguchi, and I. Okura (1999) Semicontinuous methanol biosynthesis by Methylosinus trichosporium OB3b. J. Mol. Catal. a-Chem. 144: 257–261.

    Article  CAS  Google Scholar 

  13. Sugimori, D., M. Takeguchi, and I. Okura (1995) Biocatalytic methanol production from methane with Methylosinus trichosporium OB3b: An approach to improve methanol accumulation. Biotechnol. Lett. 17: 783–784.

    Article  CAS  Google Scholar 

  14. Pen, N., L. Soussan, M. P. Belleville, J. G. Sanchez Marcano, C. Charmette, and D. Paolucci-Jeanjean (2014) An innovative membrane bioreactor for methane biohydroxylation. Bioresour. Technol. 102: 7349–7353.

    Google Scholar 

  15. Ito, H., F. Mori, K. Tabata, I. Okura, and T. Kamachi (2014) Methane hydroxylation using light energy by the combination of thylakoid and methane monooxygenase. Rsc Adv. 4: 8645–8648.

    Article  CAS  Google Scholar 

  16. Balasubramanian, R., S. M. Smith, S. Rawat, L. A. Yatsunyk, T. L. Stemmler, and A. C. Rosenzweig (2010) Oxidation of methane by a biological dicopper centre. Nature 465: 115–131.

    Article  CAS  Google Scholar 

  17. Jiang, Y., P. C. Wilkins, and H. Dalton (1993) Activation of the hydroxylase of sMMO from Methylococcus-capsulatus (Bath) by hydrogen-peroxide. Biochim. Biophys. Acta 1163: 105–112.

    Article  CAS  Google Scholar 

  18. Matsen, J. B., S. Yang, L. Y. Stein, D. Beck, and M. G. Kalyuzhnaya (2013) Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: Transcriptomic study. Frontiers in Microbiol. 4.

    Google Scholar 

  19. Takeguchi, M., T. Furuto, D. Sugimori, and I. Okura (1997) Optimization of methanol biosynthesis by Methylosinus trichosporium OB3b: An approach to improve methanol accumulation. Appl. Biochem. Biotechnol. 68: 143–152.

    Article  CAS  Google Scholar 

  20. Zollner, H. (1999) Handbook of Enzyme Inhibitors. 3rd ed. Wiley-VCH, NY, USA.

    Book  Google Scholar 

  21. Adegbola, O. (2008) High cell density methanol cultivation of Methylosinus trichosporium OB3b, PhD thesis, Department of Chemical Engineering, Queens University, Ontario, Canada.

    Google Scholar 

  22. Chistoserdova, L., J. A. Vorholt, and M. E. Lidstrom (2005) A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol. 6:208.

    Article  Google Scholar 

  23. Hanson, R. S. and T. E. Hanson (1996) Methanotrophic bacteria. Microbiol. Rev. 60: 439–471.

    CAS  Google Scholar 

  24. Li J, Gan JH, Mathews FS, Xia ZX (2011) The enzymatic reaction-induced configuration change of the prosthetic group PQQ of methanol dehydrogenase. Biochem. Biophys. Res. Commun. 406: 621–626.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Pen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pen, N., Soussan, L., Belleville, MP. et al. Methane hydroxylation by Methylosinus trichosporium OB3b: Monitoring the biocatalyst activity for methanol production optimization in an innovative membrane bioreactor. Biotechnol Bioproc E 21, 283–293 (2016). https://doi.org/10.1007/s12257-015-0762-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0762-0

Keywords

Navigation