Skip to main content
Log in

Biological conversion of methane to methanol

  • Invited Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The conversion of methane to methanol is important to economic utilization of natural/shale gas. Methanol is a valuable liquid fuel and raw material for various synthetic hydrocarbon products. Its industrial production is currently based on a two-step process that is energy-intensive and environmentally unfriendly, requiring high pressure and temperature. The biological oxidation of methane to methanol, based on methane monooxygenase activity of methanotrophic bacteria, is desirable because the oxidation is highly selective under mild conditions, but conversion rate and yield and stability of catalytic activity should be improved up to an industrially viable level. Since methanotrophic bacteria produce methanol as only a precursor of formaldehyde that is then used to synthesize various essential metabolites, the direct use of bacteria seems unsuitable for selective production of a large amount of methanol. There are two types of methane monooxygenase: soluble (sMMO) and particulate (pMMO) enzyme. sMMO consisting of three components (reductase, hydroxylase, and regulatory protein) features an (αβγ)2 dimer architecture with a di-iron active site in hydroxlase. pMMO, a trimer (pmoA, pmoB, and pmoC) in an α 3 β 3 γ 3 polypeptide arrangement is a copper enzyme with a di-copper active site located in the soluble domain of pmoB subunit. Since the membrane transports electrons well and delivers effectively methane with increased solubility in the lipid bilayer, pMMO seems more rationally designed enzyme in nature than sMMO. The engineering/evolution/modification of MMO enzymes using various biological and chemical techniques could lead to an optimal way to reach the ultimate goal of technically and economically feasible and environmentally friendly oxidation of methane. For this, multidisciplinary efforts from chemical engineering, protein engineering, and bioprocess research sectors should be systematically combined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BP Statistical Review of World Energy, June (2012).

  2. J. J. Conti, P. D. Holtberg, J. A. Beamon, S. A. Napolitano, A. M. Schaal and J.T. Turnure, Annual Energy Outlook 2012, U.S. Energy Information Administration, Washington DC (2012).

    Google Scholar 

  3. R. A. Periana, D. J. Taube, E. R. Evitt, D.G. Loffler, P.R. Wentrcek, G. Voss and T. Masuda, Science, 259, 340 (1993).

    Article  CAS  Google Scholar 

  4. M.A. Culpepper and A. C. Rosenzweig, Crit. Rev. Biochem. Mol., 47, 483 (2012).

    Article  CAS  Google Scholar 

  5. M. Khoshtinat, N. A. S. Amin and I. Noshadi, World Academy of Science, Eng. & Technol., 38, 354 (2010).

    Google Scholar 

  6. G. A. Olah, Angew. Chem. Int. Ed., 44, 2636 (2005).

    Article  CAS  Google Scholar 

  7. J.W.M. H. Geerts, J. H. B. J. Hoebink and K. van der Wiele, Catal. Today, 6, 613 (1990).

    Article  CAS  Google Scholar 

  8. A. E. Shilov and G. B. Shul’pin, Chem. Rev., 97, 2879 (1997).

    Article  CAS  Google Scholar 

  9. N. R. Hunter, H. D. Gesser, L. A. Morton and P. S. Yarlagadda, Appl. Catal. A-gen, 57, 45 (1990).

    Article  CAS  Google Scholar 

  10. G. S. Walker, J. A. Lapszewicz and G. A. Foulds, Catal. Today, 21, 519 (1994).

    Article  Google Scholar 

  11. T. J. Hall, J. S. J. Hargreaves, G. J. Hutchings, R.W. Joyner and S.H. Taylor, Fuel. Process. Thechnol., 42, 151 (1995).

    Article  CAS  Google Scholar 

  12. S. H. Taylor, J. S. J. Hargreaves, G. J. Hutchings, R.W. Joyner and C.W. Lembacher, Catal. Today, 42, 217 (1998).

    Article  CAS  Google Scholar 

  13. O. Benlounes, S. Mansouri, C. Rabia and S. Hocine, J. Nat. Gas. Chem., 17, 309 (2008).

    Article  CAS  Google Scholar 

  14. C. Hammond, M.M. Forde, M. H. A. Rahim, A. Thetford and Q. He, Angew. Chem. Int. Ed., 51, 5129 (2012).

    Article  CAS  Google Scholar 

  15. M.H.A. Rahim, M.M. Forde, R. L. Jenkins, C. Hammond and Q. He, Angew. Chem. Int. Ed., 52, 1280 (2013).

    Article  Google Scholar 

  16. C. J. Jones, D. Taube, V. R. Ziatdinov, R. A. Periana, R. J. Nielsen, J. Oxgaard and W. A. Goddard III, Angew. Chem. Int. Ed., 116, 4726 (2004).

    Article  Google Scholar 

  17. H. D. Gesser, N. R. Hunter and C. B. Prakash, Chem. Rev., 85, 235 (1985).

    Article  CAS  Google Scholar 

  18. S. S. Bharadwaj and L. D. Schmidt, Fuel. Process. Thechnol., 42, 109 (1995).

    Article  CAS  Google Scholar 

  19. N. R. Foster, Appl. Catal. A-gen, 19, 1 (1985).

    Article  CAS  Google Scholar 

  20. Q. Zhang, D. He and Q. Zhu, J. Nat. Gas. Chem., 17, 24 (2008).

    Article  Google Scholar 

  21. Q. Zhang, D. He and Q. Zhu, J. Nat. Gas. Chem., 12, 81 (2003).

    CAS  Google Scholar 

  22. R. Palkovits, M. Antonietti, P. Kuhn, A. Thomas and F. Schth, Angew. Chem. Int. Ed., 48, 6909 (2009).

    Article  CAS  Google Scholar 

  23. P. S. Casey, T. McAllister and K. Foger, Ind. Eng. Chem. Res., 33, 1120 (1994).

    Article  CAS  Google Scholar 

  24. L.M. Zhou, B. Xue, U. Kogelschatz and B. Eliasson, Plasma. Chem. Plasma. P, 18, 375 (1998).

    Article  CAS  Google Scholar 

  25. L. Chen, X.W. Zhang, L. Huang and L. C. Lei, Chem. Eng. Process., 48, 1333 (2009).

    Article  CAS  Google Scholar 

  26. D.W. Larkin, L. Zhou, L. L. Lobban and R.G. Mallinson, Ind. Eng. Chem. Res., 40, 5496 (2001).

    Article  CAS  Google Scholar 

  27. R. L. Lieberman and A. C. Rosenzweig, Crit. Rev. Biochem. Mol., 39, 147 (2004).

    Article  CAS  Google Scholar 

  28. R. Whittenbury, K. C. Phillips and J. F. Wilkinson, J. Gen. Microbiol., 61, 205 (1970).

    Article  CAS  Google Scholar 

  29. R. S. Hanson and T. E. Hanson, Microbiol. Rev., 60, 439 (1996).

    CAS  Google Scholar 

  30. S. N. Dedysh, N. S. Panikov, W. Liesack, R. Groβkopf, J. Zhou and J.M. Tiedje, Science, 282, 281 (1998).

    Article  CAS  Google Scholar 

  31. V. N. Khmelenina, M.G. Kalyuzhnaya, N.G. Starostina, N. E. Suzina and Y. A. Trotsenko, Curr. Microbiol., 35, 257 (1997).

    Article  CAS  Google Scholar 

  32. D.Y. Sorokin, B. E. Jones and J.G. Kuenen, Extremophiles, 4, 145 (2000).

    Article  CAS  Google Scholar 

  33. L. Bodrossy, K. L. Kovaècs, I. R. McDonald and J. C. Murrell, Fems. Microbiol. Lett., 170, 335 (1999).

    CAS  Google Scholar 

  34. J. P. Bowman, S. A. McCammon and J. H. Skerratt, Microbiology, 143, 1451 (1997).

    Article  CAS  Google Scholar 

  35. S. Vuilleumier, V. N. Khmelenina, F. Bringel and A. S. Reshetnikov, J. Bacteriol., 194, 551 (2012).

    Article  CAS  Google Scholar 

  36. L.Y. Stein, S. Yoon, J. D. Semrau and A. A. DiSpirito, J. Bacteriol., 192, 6497 (2010).

    Article  CAS  Google Scholar 

  37. A. Miyaji, Method. Enzymol., 495, 211 (2011).

    Article  CAS  Google Scholar 

  38. B. Gilbert, I. R. McDonald, R. finch, G. P. Stafford, A. K. Nielsen and J. C. Murrell, Appl. Environ. Microb., 66, 966 (2000).

    Article  CAS  Google Scholar 

  39. L.Y. Stein, F. Bringel, A. A. DiSpirito and S. Han, J. Bacteriol., 193, 2668 (2011).

    Article  CAS  Google Scholar 

  40. I.R. McDonald, H. Uchiyama, S. Kambe, O. Yagi, and J. C. Murrell, Appl. Environ. Microb., 63, 1898 (1997).

    CAS  Google Scholar 

  41. Y. Chen, A. Crombie, M. T. Rahman and S. N. Dedysh, J. Bacteriol., 192, 3840 (2010).

    Article  CAS  Google Scholar 

  42. N. Ward, Ø. Larsen, J. Sakwa and L. Bruseth, Plos. Biol., 2, 1617 (2004).

    Google Scholar 

  43. J. Colby, D. I. Stirling and H. Dalton, Biochem. J., 165, 395 (1977).

    CAS  Google Scholar 

  44. M. Merkx, D. A. Kopp, M. H. Sazinsky, J. L. Blazyk, J. Müller and S. J. Lippard, Angew. Chem. Int. Ed., 40, 2782 (2001).

    Article  CAS  Google Scholar 

  45. R. Balasubramanian and A. C. Rosenzweig, Accounts. Chem. Res., 40, 573 (2007).

    Article  CAS  Google Scholar 

  46. A. S. Hakemian and A. C. Rosenzweig, Annu. Rev. Biochem., 76, 223 (2007).

    Article  CAS  Google Scholar 

  47. A. K. Nielsen, K. Gerdes, H. Degn and J. C. Murrell, Microbiology, 142, 1289 (1996).

    Article  CAS  Google Scholar 

  48. R. N. Patel, C. T. Hou, A. I. Laskin and A. Felix, Appl. Environ. Microb., 44, 1130 (1982).

    CAS  Google Scholar 

  49. J. Green and H. Dalton, J. Biol. Chem., 260, 15795 (1985).

    CAS  Google Scholar 

  50. B.G. Fox, W. A. Froland, J. E. Dege and J. D. Lipscomb, J. Biol. Chem., 264, 10023 (1989).

    CAS  Google Scholar 

  51. S. Friedle, E. Reisner and S. J. Lippard, Chem. Soc. Rev., 39, 2768 (2010).

    Article  CAS  Google Scholar 

  52. C. E. Tinberg and S. J. Lippard, Accounts. Chem. Res., 44, 280 (2011).

    Article  CAS  Google Scholar 

  53. S. M. Smith, S. Rawat, J. Telser, B.M. Hoffman, T. L. Stemmler and A. C. Rosenzweig, Biochemistry, 50, 10231 (2011).

    Article  CAS  Google Scholar 

  54. R. Balasubramanian, S.M. Smith, S. Rawat, L. A. Yatsunyk, T. L. Stemmler and A. C. Rosenzweig, Nature, 465, 115 (2010).

    Article  CAS  Google Scholar 

  55. P. F. Dunfield, A. Yuryev, P. Senin and A.V. Smirnova, Nature, 450, 879 (2007).

    Article  CAS  Google Scholar 

  56. M. R. Hyman and P.M. Wood, Biochem. J., 212, 31 (1983).

    CAS  Google Scholar 

  57. C. Scheutz, P. Kjeldsen, J. E. Bogner, A. D. Visscher, J. Gebert, H.A. Hilger, M. Huber-Humer and K. Spokas, Waste. Manage. Res., 27, 409 (2009).

    Article  CAS  Google Scholar 

  58. Y. Jiang, P. C. Wilkins and H. Dalton, Biochim. Biophys. Acta, 1163, 105 (1993).

    Article  CAS  Google Scholar 

  59. Y. Jiang and H. Dalton, Biochim. Biophys. Acta, 1201, 76 (1994).

    Article  CAS  Google Scholar 

  60. T. Yoshimoto, K. Takahashi, H. Nishimura, A. Ajima, Y. Tamaura and Y. Inada, Biotechnol. Lett., 6, 337 (1984).

    Article  CAS  Google Scholar 

  61. Y. Inada, H. Nishimura, K. Takahashi, T. Yoshimoto, A. R. Saha and Y. Saito, Biochem. Biophys. Res. Commun., 131, 532 (1984).

    Google Scholar 

  62. K. Takahashi, Y. Kodera, T. Yoshimoto, A. Ajima, A. Matsushima and Y. Inada, Biochem. Biophys. Res. Commun., 131, 532 (1985).

    Article  CAS  Google Scholar 

  63. A. Matsushima, M. Okada and Y. Inada, FEBS Lett., 178, 275 (1984).

    Article  CAS  Google Scholar 

  64. H. F. Gaertner and A. J. Puigserver, Prot. Struct. Funct. Genet, 3, 130 (1988).

    Article  CAS  Google Scholar 

  65. M.-T. Babonneau, R. Jacquier, R. Lazaro and P. Viallefont, Tetrahedron Lett., 30, 2787 (1989).

    Article  CAS  Google Scholar 

  66. C. Pina, D. Clark and H. Blanch, Biotechol. Techniques, 3, 333 (1989).

    Article  CAS  Google Scholar 

  67. H. F. Gaertner and A. J. Puigserver, Eur. J. Biochem., 181, 207 (1989).

    Article  CAS  Google Scholar 

  68. G. Ljunger, P. Adlercreutz and B. Mattiasson, Biocatalysis, 7, 279 (1993).

    Article  CAS  Google Scholar 

  69. A. Abuchowski and F. F. Davis, Biochim. Biophys. Acta, 578, 41 (1979).

    Article  CAS  Google Scholar 

  70. A. Ferjancic, A. J. Puigserver and H. F. Gaertner, Biotechnol. Lett., 10, 101 (1988).

    Article  CAS  Google Scholar 

  71. H. Lee, K. Takahashi, Y. Kodera, K. Owada, T. Tsuzuki, A. Matsushima and Y. Inada, Biotechnol. Lett., 10, 407 (1988).

    Google Scholar 

  72. J. Souppe, M. Urrutigoity and G. Levesoue, Biochim. Biophys. Acta, 957, 254 (1988).

    Article  CAS  Google Scholar 

  73. J. Souppe, M. Urrutigoity and G. Levesoue, New J. Chem., 12, 503 (1989).

    Google Scholar 

  74. K. Takahashi, A. Ajima, T. Yoshimoto and Y. Inada, Biochem. Biophys. Res. Commun., 125, 761 (1984).

    Article  CAS  Google Scholar 

  75. K. Takahashi, H. Nishimura, T. Yoshimoto, Y. Saito and Y. Inada, Biochem. Biophys. Res. Commun., 121, 261 (1984).

    Article  CAS  Google Scholar 

  76. K. Takahashi, H. Nishimura, T. Yoshimoto, M. Okada, A. Ajima, A. Matsushima, Y. Tamaura, Y. Saito and Y. Inada, Biotechnol. Lett., 6, 765 (1984).

    Article  CAS  Google Scholar 

  77. M. Urrutigoity and J. Souppe, Biocatalysis, 2, 145 (1989).

    Article  CAS  Google Scholar 

  78. P. Wirth, J. Souppe, D. Tritsch and J.-F. Biellmann, Bioorganic Chem., 19, 133 (1991).

    Article  CAS  Google Scholar 

  79. T. Yoshimoto, A. Ritani, K. Ohwada, K. Takahashi, Y. Kodera, A. Matsushima, Y. Saito and Y. Inada, Biochem. Biophys. Res. Commun., 148, 876 (1987).

    Article  CAS  Google Scholar 

  80. A. Glieder, E. T. Farinas and F. H. Arnold, Nature, 20, 1135 (2002).

    Article  CAS  Google Scholar 

  81. S. J. Lee, M. S. McCormick, S. J. Lippard and U. S. Cho, Nature, 494, 380 (2013).

    Article  CAS  Google Scholar 

  82. D.W. Choi, W. E. Antholine, Y. S. Do, J. D. Semrau, C. J. Kisting, R.C. Kunz, D. Campbell, V. Rao, S. C. Hartsel and A. A. DiSpirito, Microbiology, 151, 3417 (2005).

    Article  CAS  Google Scholar 

  83. S. S.-F. Yu, K. H.-C. Chen, M.Y.-H. Tseng, Y.-S. Wang, C.-F. Tseng, Y.-J. Chen, D.-S. Huang and S. I. Chan, J. Bacteriol., 185, 5915 (2003).

    Article  CAS  Google Scholar 

  84. Z. Gou, X.-H. Xing, M. Luo, H. Jiang, B. Han, H. Wu, L. Wang and F. Zhang, FEMS Microbiol. Lett., 263, 136 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeewon Lee.

Additional information

Jeewon Lee is a Professor in the Department of Chemical and Biological Engineering at Korea University in Korea. He received his B.S. degree (Seoul National University) and Ph.D. degree (Illinois Institute of Technology) all in Chemical Engineering and was a postdoctoral fellow at the Institute of Gas Technology in Chicago. From 1994 to 1997, he was a head of bioprocess engineering laboratory at the Hanhyo Institutes of Technology and also worked at the KRIBB (Korea Research Institute of Bioscience and Biotechnology) for 4 years before joining Korea University in 2002. He was a visiting professor at the Massachusetts Institute of Technology in 2010. His research interests include biomolecular process engineering, protein engineering, biosensor/biochip, and nanomedicine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, D., Lee, J. Biological conversion of methane to methanol. Korean J. Chem. Eng. 30, 977–987 (2013). https://doi.org/10.1007/s11814-013-0060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0060-5

Key words

Navigation