Skip to main content
Log in

Enrichment as a screening method for a high-growth-rate microalgal strain under continuous cultivation system

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Microalgae are a promising feedstock for renewable biodiesel production. High productivity of biodiesel production from microalgae is directly related to growth rate as well as lipid content of cells. In the present study, an enrichment process in a continuous cultivation system was developed to screen a high-growth-rate microalga from a mixed culture of microalgal species; Chlorella vulgaris, Chlorella protothecoides, and Chlamydomonas reinhardtii were used as test organisms for our experiments. The time-dependent washout of mixed microalgal pool was executed to successfully enrich the C. reinhardtii, which exhibits the higher growth rate than C. vulgaris and C. protothecoides under turbidostat conditions within 75 h. The domination of C. reinhardtii in the mixed culture was validated by on-line monitoring of growth rate and flowcytometric analysis. For the time-efficient production of microalgal biomass, this screening process has a high potential to segregate the fast-growing microalgal strains from the pool of various uncharacterized microalgal species and random mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brennan, L. and P. Owende (2010) Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sust. Energ. Rev. 14: 557–577.

    Article  CAS  Google Scholar 

  2. Schenk, P. M., S. R. Thomas-Hall, E. Stephens, U. C. Marx, J. H. Mussgnug, C. Posten, O. Kruse, and B. Hankamer (2008) Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenerg. Res. 1: 20–43.

    Article  Google Scholar 

  3. Wijffels, R. H. and M. J. Barbosa (2010) An outlook on microalgal biofuels. Sci. 329: 796–799.

    Article  CAS  Google Scholar 

  4. Gavrilescu, M. and Y. Chisti (2005) Biotechnology-a sustainable alternative for chemical industry. Biotechnol. Adv. 23: 471–499.

    Article  CAS  Google Scholar 

  5. Benemann, J. R. (2000) Hydrogen production by microalgae. J. Appl. Phycol. 12: 291–300.

    Article  CAS  Google Scholar 

  6. John, R. P., G. S. Anisha, K. M. Nampoothiri, and A. Pandey (2011) Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol. 102: 186–193.

    Article  CAS  Google Scholar 

  7. Harun, R., M. Singh, G. M. Forde, and M. K. Danquah (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew. Sust. Energ. Rev. 14: 1037–1047.

    Article  CAS  Google Scholar 

  8. Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol. Adv. 25: 294–306.

    Article  CAS  Google Scholar 

  9. Mata, T. M., A. A. Martins, and N. S. Caetano (2010) Microalgae for biodiesel production and other applications: A review. Renew. Sust. Energ. Rev. 14: 217–232.

    Article  CAS  Google Scholar 

  10. Kim, C. W., M. G. Sung, K. Nam, M. Moon, J. H. Kwon, and J. W. Yang (2014) Effect of monochromatic illumination on lipid accumulation of Nannochloropsis gaditana under continuous cultivation. Bioresour. Technol. 159: 30–35.

    Article  CAS  Google Scholar 

  11. Takagi, M., Karseno, and T. Yoshida (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 101: 223–226.

    Article  CAS  Google Scholar 

  12. Widjaja, A., C. C. Chien, and Y. H. Ju (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J. Taiwan Inst. Chem. Eng. 40: 13–20.

    Article  CAS  Google Scholar 

  13. Breuer, G., P. P. Lamers, D. E. Martens, R. B. Draaisma, and R. H. Wijffels (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour. Technol. 124: 217–226.

    Article  CAS  Google Scholar 

  14. Shen, Y., C. Chen, W. Chen, and X. Xu (2014) Attached culture of Nannochloropsis oculata for lipid production. Bioproc. Biosyst. Eng. 37: 1743–1748.

    Article  CAS  Google Scholar 

  15. Zhang, D., S. Xue, Z. Sun, K. Liang, L. Wang, Q. Zhang, and W. Cong (2014) Investigation of continuous-batch mode of twostage culture of Nannochloropsis sp. for lipid production. Bioproc. Biosyst. Eng. 37: 2073–2082.

    Article  CAS  Google Scholar 

  16. Barreiro, D. L., W. Prins, F. Ronsse, and W. Brilman (2013) Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects. Biomass Bioenerg. 53: 113–127.

    Article  Google Scholar 

  17. Biller, P. and A. B. Ross (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour. Technol. 102: 215–225.

    Article  CAS  Google Scholar 

  18. Yu, G., Y. Zhang, L. Schideman, T. L. Funk, and Z. Wang (2011) Hydrothermal liquefaction of low lipid content microalgae into bio-crude Oil. Trans ASABE. 54: 239–246.

    Article  Google Scholar 

  19. Courchesne, N. M., A. Parisien, B. Wang, and C. Q. Lan (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J. Biotechnol. 141: 31–41.

    Article  CAS  Google Scholar 

  20. Anandarajah, K., G. Mahendraperumal, M. Sommerfeld, and Q. Hu (2012) Characterization of microalga Nannochloropsis sp. mutants for improved production of biofuels. Appl. Energ. 96: 371–377.

    Article  CAS  Google Scholar 

  21. Doan, T. T. Y. and J. P. Obbard (2012) Enhanced intracellular lipid in Nannochloropsis sp. via random mutagenesis and flow cytometric cell sorting. Algal Res. 1: 17–21.

    Article  CAS  Google Scholar 

  22. Vigeolas, H., F. Duby, E. Kaymak, G. Niessen, P. Motte, F. Franck, and C. Remacle (2012) Isolation and partial characterization of mutants with elevated lipid content in Chlorella sorokiniana and Scenedesmus obliquus. J. Biotechnol. 162: 3–12.

    Article  CAS  Google Scholar 

  23. Choi, J. I., M. Yoon, M. Joe, H. Park, S. G. Lee, S. J. Han, and P. C. Lee (2014) Development of microalga Scenedesmus dimorphus mutant with higher lipid content by radiation breeding. Bioproc. Biosyst. Eng. 37: 2437–2444.

    Article  CAS  Google Scholar 

  24. Jung, J.-Y., H. Lee, W.-S. Shin, M.-G. Sung, J.-H. Kwon, and J.-W. Yang (2014) Utilization of seawater for cost-effective cultivation and harvesting of Scenedesmus obliquus. Bioproc. Biosyst. Eng. 38: 449–455.

    Article  Google Scholar 

  25. Kwon, J. H., M. Rogner, and S. Rexroth (2012) Direct approach for bioprocess optimization in a continuous flat-bed photobioreactor system. J. Biotechnol. 162: 156–162.

    Article  CAS  Google Scholar 

  26. Flegr, J. (1997) Two distinct types of natural selection in turbidostat-like and chemostat-like ecosystems. J. Theor. Biol. 188: 121–126.

    Article  Google Scholar 

  27. Tempest, D., J. R. Norris, and M. Richmond (1978) Dynamics of microbial growth. John Wiley and Sons.

    Google Scholar 

  28. Zhang, X., J. Rong, H. Chen, C. He, and Q. Wang (2014) Current status and outlook in the application of microalgae in biodiesel production and environmental protection. Frontiers in Energy Res. 2: 1–15.

    CAS  Google Scholar 

  29. Karpagam, R., R. Preeti, B. Ashokkumar, and P. Varalakshmi (2015) Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production. Ecotoxicol. Environ. Safety 121: 253–257.

    Article  CAS  Google Scholar 

  30. Crispin, J. C., A. Martinez, and J. Alcocer-Varela (2003) Quantification of regulatory T cells in patients with systemic lupus erythematosus. J. Autoimmunity. 21: 273–276.

    Article  Google Scholar 

  31. Hyka, P., S. Lickova, P. Pribyl, K. Melzoch, and K. Kovar (2013) Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol. Adv. 31: 2–16.

    Article  CAS  Google Scholar 

  32. Kumar, A., A. K. Pandey, S. S. Singh, R. Shanker, and A. Dhawan (2011) A flow cytometric method to assess nanoparticle uptake in bacteria. Cytometry. Part A: The J. Internat. Soc. Anal. Cytol. 79: 707–712.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simon MoonGeun Jung or Jong-Hee Kwon.

Additional information

These authors have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, WS., Lee, H., Sung, MG. et al. Enrichment as a screening method for a high-growth-rate microalgal strain under continuous cultivation system. Biotechnol Bioproc E 21, 268–273 (2016). https://doi.org/10.1007/s12257-015-0716-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0716-6

Keywords

Navigation