Skip to main content
Log in

Attached culture of Nannochloropsis oculata for lipid production

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The influences of urea, nitrate and glycine with four concentration levels on attached culture of Nannochloropsis oculata were investigated. The organic nitrogen source glycine was effective on improving not only adhesion biomass productivity but also adhesion rate. The maximum adhesion biomass productivity of 15.76 ± 0.52 g m−2 day−1 with adhesion rate of 76.67 ± 0.42 % was achieved with 18 mM glycine. To increase the lipid production, three lipid enhancing strategies were conducted afterwards, including nitrogen starvation, high light, and the combination of nitrogen starvation and high light. In nitrogen starvation situation, although the lipid content was greatly increased, the adhesion biomass productivity dropped probably due to the low cell viability. Increasing light intensity was effective on enhancing both adhesion biomass productivity and lipid content. The results indicated that nitrogen starvation was effective on improving both lipid content and adhesion rate when high light was applied. The maximum lipid yield of 4.32 ± 0.14 g m−2 day−1 with adhesion biomass productivity of 21.32 ± 0.65 g m−2 day−1, adhesion rate of 86.81 ± 0.10 % and lipid content of 20.24 ± 0.06 % was achieved with the combination strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kawata M, Nanba M, Matsukawa R, Chihara M, Karube I (1998) Isolation and characterization of a green alga Neochloris sp. for CO2 fixation. Stud Surf Sci Catal 114:637–640

    Article  CAS  Google Scholar 

  2. Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    Article  CAS  Google Scholar 

  3. Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    Article  CAS  Google Scholar 

  4. Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28(1):26–128

    Google Scholar 

  5. Moheimani NR, Borowitzka MA (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712

    Article  Google Scholar 

  6. Carlozzi P (2003) Dilution of solar radiation through “culture lamination” in photobioreactor rows facing south north: a way to improve the efficiency of light utilization. Biotechnol Bioeng 81:305–315

    Article  CAS  Google Scholar 

  7. Johnson M, Wen Z (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85:525–534

    Article  CAS  Google Scholar 

  8. Gross M, Henry W, Michael C, Wen Z (2013) Development of a rotating algal biofilm growth system for attached microalgae growth with in-situ biomass harvest. Bioresour Technol 150:195–201

    Article  CAS  Google Scholar 

  9. Christenson L, Sims R (2012) Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotech Bioeng 109:1674–1684

    Article  CAS  Google Scholar 

  10. Schnurr P, Espie G, Allen G (2013) Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. Bioresour Technol 136:337–344

    Article  CAS  Google Scholar 

  11. Courchesne NMD, Parisien A, Wang B et al (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:31–41

    Article  CAS  Google Scholar 

  12. Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzym Microb Technol 27:631–635

    Article  CAS  Google Scholar 

  13. Ho SH, Chen CY, Chang JS (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252

    Article  CAS  Google Scholar 

  14. Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245–251

    Article  CAS  Google Scholar 

  15. Shen Y, Yuan W, Pei Z, Mao E (2010) Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Appl Biochem Biotechnol 160:1674–1684

    Article  CAS  Google Scholar 

  16. Guillard R, Ryther JH (1962) Studies of marine planktonic diatoms. I.Cyclotella nana Husted and Detonula confervacea (Cleve) Gran(“F” medium). Can J Microbiol 8:229–239

    Article  CAS  Google Scholar 

  17. Shen Y, Chen W, Xu X, Zhao Y (2013) Multi-level photobioreactor for attached microalgal cultivation. Pending Chinese Patent 201310336140.1, 22 Aug 2013

  18. Shen Y, Xu X, Zhao Y, et al. (2013) Influence of algae species, substrata and culture conditions on attached microalgal culture. Bioprocess Biosyst Eng. doi:10.1007/s00449-013-1011-6

  19. Li Y, Zhou W, Hu B et al (2012) Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoide cultivated in highly concentrated municipal wastewater. Biotechnol Bioeng 109:2222–2229

    Article  CAS  Google Scholar 

  20. Bezerra RP, Matsudo MC, Sato S et al (2012) Effects of photobioreactor configuration, nitrogen source and light intensity on the fed-batch cultivation of Arthrospira (Spirulina) platensis. Bioenergetic aspects. Biomass Bioeng 37:309–317

    Article  CAS  Google Scholar 

  21. Liu T, Wang J, Hu Q et al (2012) Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour Technol 127:216–222

    Article  Google Scholar 

  22. Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390

    Article  CAS  Google Scholar 

  23. Fierro S, del Pilar Sanchez-Saavedra M, Copalcua C (2008) Nitrate and phosphate removal by chitosan immobilized Scenedesmus. Bioresour Technol 99:1274–1279

    Article  CAS  Google Scholar 

  24. Molina Grima EM, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  CAS  Google Scholar 

  25. Sekar R, Venugopalan VP, Satpathy KK, Nair KVK, Rao VNR (2004) Laboratory studies on adhesion of microalgae to hard substrates. Biomed Life Sci 173(2):109–116

    Google Scholar 

  26. Bender DA, Bender AE (1999) Benders’ dictionary of nutrition and food technology, 7th edn. CRC Press, Boca Raton

    Book  Google Scholar 

  27. Shen Y, Yuan W, Pei ZJ et al (2009) Microalgae mass production methods. Transactions of the ASABE 52:1275–1287

    Article  Google Scholar 

  28. Chen X, Goh QY, Tan W et al (2011) Lumostatic strategy for microalgae cultivation utilizing image analysis and chlorophyllacontent as design parameters. Bioresour Technol 102:6005–6012

    Article  CAS  Google Scholar 

  29. Ruffing AM, Chen RR (2012) Transcriptome profiling of a curdlan-producing Agrobacterium reveals conserved regulatory mechanisms of exopolysaccharide biosynthesis. Microb Cell Fact 11:1–13

    Article  Google Scholar 

  30. Bragadeeswaran S, Jeevapriya R, Prabhu K et al (2011) Exopolysaccharide production by Bacillus cereus GU812900, a fouling marine bacterium. Afr J Microbiol Res 5:4124–4132

    Article  CAS  Google Scholar 

  31. Stapleton RD Jr, Singh VP (2002) Biotransformations: bioremediation technology for health and environmental protection. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Natural Science Foundation of China (Award 51108085), the Natural Science Foundation of Fujian Province (Award No. 2011J05125) and the Program of the Education Department of Fujian Province (Award JA11030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y., Chen, C., Chen, W. et al. Attached culture of Nannochloropsis oculata for lipid production. Bioprocess Biosyst Eng 37, 1743–1748 (2014). https://doi.org/10.1007/s00449-014-1147-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1147-z

Keywords

Navigation