Skip to main content
Log in

Engineering antibodies for dual specificity and enhanced potency

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Despite the tremendous success of monoclonal antibodies for human therapeutics, there remain several diseases that escape monospecific IgG antibody-mediated immunotherapy. However, the recent in-depth understanding of antibody structure and function, and significant advances in antibody engineering techniques, have facilitated the development of unnatural bispecific antibodies, which are capable of recruiting more powerful effector cells, retargeting target cells, and blocking two different disease mechanisms simultaneously. Conventionally, bispecific antibodies were generated by the fusion of two different hybridoma cells or chemical coupling of two monospecific antibodies. Recently, however, versatile genetic approaches have been devised to produce more homogenous and correctly assembled bispecific antibodies. To ensure improved efficacy, safety, and efficient manufacturing, a variety of strategies to create bispecific antibody fragments and native IgG-like bispecific antibody formats have been developed and are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scott, A. M., J. D. Wolchok, and L. J. Old (2012) Antibody therapy of cancer. Nat. Rev. Cancer. 12: 278–287.

    Article  CAS  Google Scholar 

  2. Dimitrov, D. S. (2012) Therapeutic proteins: Methods in Molecular Biology. 2nd ed., pp. 1–26. Humana Press, NY, USA.

    Book  Google Scholar 

  3. Weis, S. M. and D. A. Cheresh (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat. Med. 17: 1359–1370.

    Article  CAS  Google Scholar 

  4. May, C., P. Sapra, and H.-P. Gerber (2012) Advances in bispecific biotherapeutics for the treatment of cancer. Biochem. Pharmacol. 84: 1105–1112.

    Article  CAS  Google Scholar 

  5. Scheuer, W., T. Friess, H. Burtscher, B. Bossenmaier, J. Endl, and M. Hasmann (2009) Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res. 69: 9330–9336.

    Article  CAS  Google Scholar 

  6. Li, B., Y. Meng, L. Zheng, X. Zhang, Q. Tong, W. Tan, S. Hu, H. Li, Y. Chen, J. Song, G. Zhang, L. Zhao, D. Zhang, S. Hou, W. Qian, and Y. Guo (2013) Bispecific antibody to ErbB2 overcomes trastuzumab resistance through comprehensive blockade of ErbB2 heterodimerization. Cancer Res. 73: 6471–6483.

    Article  CAS  Google Scholar 

  7. Sebastian, M. (2010) Review of catumaxomab in the treatment of malignant ascites. Cancer Manag. Res. 2: 283–286.

    Article  CAS  Google Scholar 

  8. Seimetz, D., H. Lindhofer, and C. Bokemeyer (2010) Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3) as a targeted cancer immunotherapy. Cancer Treat. Rev. 36: 458–467.

    Article  CAS  Google Scholar 

  9. Milstein, C. and A. C. Cuello (1983) Hybrid hybridomas and their use in immunohistochemistry. Nature 305: 537–540.

    Article  CAS  Google Scholar 

  10. Tarditi, L., M. Camagna, A. Parisi, C. Vassarotto, L. B. DeMonte, M. Letarte, F. Malavasi, and M. Mariani (1992) Selective highperformance liquid chromatographic purification of bispecific monoclonal antibodies. J. Chromatogr. A. 599: 13–20.

    Article  CAS  Google Scholar 

  11. Lindhofer, H., R. Mocikat, B. Steipe, and S. Thierfelder (1995) Preferential species-restricted heavy/light chain pairing in rat/mouse quadromas. Implications for a single-step purification of bispecific antibodies. J. Immunol. 155: 219–225.

    CAS  Google Scholar 

  12. Zeidler, R., J. Mysliwietz, M. Csanady, A. Walz, I. Ziegler, B. Schmitt, B. Wollenberg, and H. Lindhofer (2000) The Fc-region of a new class of intact bispecific antibody mediates activation of accessory cells and NK cells and induces direct phagocytosis of tumour cells. Br. J. Cancer. 83: 261–266.

    Article  CAS  Google Scholar 

  13. Jäger, M., A. Schoberth, P. Ruf, J. Hess, and H. Lindhofer (2009) The trifunctional antibody ertumaxomab destroys tumor cells that express low levels of human epidermal growth factor receptor 2. Cancer Res. 69: 4270–4276.

    Article  Google Scholar 

  14. Nisonoff, A. and M. M. Rivers (1961) Recombination of a mixture of univalent antibody fragments of different specificity. Arch. Biochem. Biophys. 93: 460–462.

    Article  CAS  Google Scholar 

  15. Pullarkat, V., Y. Deo, J. Link, L. Spears, V. Marty, R. Curnow, S. Groshen, C. Gee, and J. S. Weber (1999) A phase I study of a HER2/neu bispecific antibody with granulocyte-colony-stimulating factor in patients with metastatic breast cancer that overexpresses HER2/neu. Cancer Immunol. Immun. 48: 9–21.

    Article  CAS  Google Scholar 

  16. Fury, M., A. Lipton, K. Smith, C. Winston, and D. Pfister (2008) A phase-I trial of the epidermal growth factor receptor directed bispecific antibody MDX-447 without and with recombinant human granulocyte-colony stimulating factor in patients with advanced solid tumors. Cancer Immunol. Immun. 57: 155–163.

    Article  CAS  Google Scholar 

  17. Hartmann, F., C. Renner, W. Jung, C. Deisting, M. Juwana, B. Eichentopf, M. Kloft, and M. Pfreundschuh (1997) Treatment of refractory Hodgkin’s disease with an anti-CD16/CD30 bispecific antibody. Blood. 89: 2042–2047.

    CAS  Google Scholar 

  18. Doppalapudi, V. R., J. Huang, D. Liu, P. Jin, B. Liu, L. Li, J. Desharnais, C. Hagen, N. J. Levin, M. J. Shields, M. Parish, R. E. Murphy, J. DelRosario, B. D. Oates, J. Y. Lai, M. J. Matin, Z. Ainekulu, A. Bhat, C. W. Bradshaw, G. Woodnutt, R. A. Lerner, and R. W. Lappe (2010) Chemical generation of bispecific antibodies. Proc. Natl. Acad. Sci. U S A. 107: 22611–22616.

    Article  CAS  Google Scholar 

  19. Kim, C. H., J. Y. Axup, A. Dubrovska, S. A. Kazane, B. A. Hutchins, E. D. Wold, V.V. Smider, and P.G. Schultz (2012) Synthesis of bispecific antibodies using genetically encoded unnatural amino acids. J. Am. Chem. Soc. 134: 9918–9921.

    Article  CAS  Google Scholar 

  20. Kolb, H. C., M. G. Finn, and K. B. Sharpless (2001) Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40: 2004–2021.

    Article  CAS  Google Scholar 

  21. Segal, D. M., G. J. Weiner, and L. M. Weiner (1999) Bispecific antibodies in cancer therapy. Curr. Opin. Immunol. 11: 558–562.

    Article  CAS  Google Scholar 

  22. Arndt, K. M., K. M. Müller, and A. Plückthun (1998) Factors influencing the dimer to monomer transition of an antibody single-chain Fv fragment. Biochem. 37: 12918–12926.

    Article  CAS  Google Scholar 

  23. Holliger, P., T. Prospero, and G. Winter (1993) “Diabodies”: small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA. 90: 6444–6448.

    Article  CAS  Google Scholar 

  24. Arndt, M. A., J. Krauss, S. M. Kipriyanov, M. Pfreundschuh, and M. Little (1999) A bispecific diabody that mediates natural killer cell cytotoxicity against xenotransplantated human Hodgkin’s tumors. Blood. 94: 2562–2568.

    CAS  Google Scholar 

  25. Unverdorben, F., A. Färber-Schwarz, F. Richter, M. Hutt, and R. E. Kontermann (2012) Half-life extension of a single-chain diabody by fusion to domain B of staphylococcal protein A. Protein Eng. Des. Sel. 25: 81–88.

    Article  CAS  Google Scholar 

  26. Zhu, Z., L. G. Presta, G. Zapata, and P. Carter (1997) Remodeling domain interfaces to enhance heterodimer formation. Protein Sci. 6: 781–788.

    Article  CAS  Google Scholar 

  27. Johnson, S., S. Burke, L. Huang, S. Gorlatov, H. Li, W. Wang, W. Zhang, N. Tuaillon, J. Rainey, B. Barat, Y. Yang, L. Jin, V. Ciccarone, P. A. Moore, S. Koenig, and E. Bonvini (2010) Effector cell recruitment with novel Fv-based dual-affinity re-targeting protein leads to potent tumor cytolysis and in vivo B-cell depletion. J. Mol. Biol. 399: 436–449.

    Article  CAS  Google Scholar 

  28. Baeuerle, P. A., P. Kufer, and R. Bargou (2009) BiTE: Teaching antibodies to engage T-cells for cancer therapy. Curr. Opin. Mol. Ther. 11: 22–30.

    CAS  Google Scholar 

  29. Nagorsen, D., P. Kufer, P. A. Baeuerle, and R. Bargou (2012) Blinatumomab: A historical perspective. Pharmacol. Therapeut. 136: 334–342.

    Article  CAS  Google Scholar 

  30. Mack, M., G. Riethmüller, and P. Kufer (1995) A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc. Natl. Acad. Sci. USA. 92: 7021–7025.

    Article  CAS  Google Scholar 

  31. Bargou, R., E. Leo, G. Zugmaier, M. Klinger, M. Goebeler, S. Knop, R. Noppeney, A. Viardot, G. Hess, M. Schuler, H. Einsele, C. Brandl, A. Wolf, P. Kirchinger, P. Klappers, M. Schmidt, G. Riethmüller, C. Reinhardt, P. A. Baeuerle, and P. Kufer (2008) Tumor regression in cancer patients by very low doses of a T cell–engaging antibody. Sci. 321: 974–977.

    Article  CAS  Google Scholar 

  32. Roopenian, D. C. and S. Akilesh (2007) FcRn: The neonatal Fc receptor comes of age. Nat. Rev. Immunol. 7: 715–725.

    Article  CAS  Google Scholar 

  33. Jung, S. (2013) Tailoring immunoglobulin Fc for highly potent and serum-stable therapeutic antibodies. Biotechnol. Bioproc. Eng. 18: 625–636.

    Article  CAS  Google Scholar 

  34. Wu, C., H. Ying, S. Bose, R. Miller, L. Medina, L. Santora, and T. Ghayur (2009) Molecular construction and optimization of anti-human IL-1α/β dual variable domain immunoglobulin (DVD-IgTM) molecules. MAbs. 1: 339–347.

    Article  Google Scholar 

  35. Wu, C., H. Ying, C. Grinnell, S. Bryant, R. Miller, A. Clabbers, S. Bose, D. McCarthy, R.-R. Zhu, L. Santora, R. Davis-Taber, Y. Kunes, E. Fung, A. Schwartz, P. Sakorafas, J. Gu, E. Tarcsa, A. Murtaza, and T. Ghayur (2007) Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat. Biotechnol. 25: 1290–1297.

    Article  CAS  Google Scholar 

  36. Correia, I., J. Sung, R. Burton, C. G. Jakob, B. Carragher, T. Ghayur, and C. Radziejewski (2013) The structure of dual-variable-domain immunoglobulin molecules alone and bound to antigen. MAbs. 5: 364–372.

    Article  Google Scholar 

  37. Chames, P. and D. Baty (2009) Bispecific antibodies for cancer therapy: the light at the end of the tunnel? MAbs. 1: 539–547.

    Article  Google Scholar 

  38. Ridgway, J. B. B., L. G. Presta, and P. Carter (1996) ‘Knobs-intoholes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 9: 617–621.

    Article  CAS  Google Scholar 

  39. Atwell, S., J. B. B. Ridgway, J. A. Wells, and P. Carter (1997) Stable heterodimers from remodeling the domain interface of a homodimer using a phage display library. J. Mol. Biol. 270: 26–35.

    Article  CAS  Google Scholar 

  40. Merchant, A. M., Z. Zhu, J. Q. Yuan, A. Goddard, C. W. Adams, L. G. Presta, and P. Carter (1998) An efficient route to human bispecific IgG. Nat. Biotechnol. 16: 677–681.

    Article  CAS  Google Scholar 

  41. Schiffer, M., C. H. Chang, V. M. Naik, and F. J. Stevens (1988) Analysis of immunoglobulin domain interactions: Evidence for a dominant role of salt bridges. J. Mol. Biol. 203: 799–802.

    Article  CAS  Google Scholar 

  42. Gunasekaran, K., M. Pentony, M. Shen, L. Garrett, C. Forte, A. Woodward, S. B. Ng, T. Born, M. Retter, K. Manchulenko, H. Sweet, I. N. Foltz, M. Wittekind, and W. Yan (2010) Enhancing antibody Fc heterodimer formation through electrostatic steering effects: Application to bispecific molecules and monovalent IgG. J. Biol. Chem. 285: 19637–19646.

    Article  CAS  Google Scholar 

  43. Suresh, M. R., A. C. Cuello, and C. Milstein (1986) Bispecific monoclonal antibodies from hybrid hybridomas. pp. 210–228. In: H. V. V. John and J. Langone (ed.). Methods in Enzymology. Academic Press, USA.

    Google Scholar 

  44. Wranik, B. J., E. L. Christensen, G. Schaefer, J. K. Jackman, A. C. Vendel, and D. Eaton (2012) LUZ-Y, a novel platform for the mammalian cell production of full-length IgG-bispecific antibodies. J. Biol. Chem. 287: 43331–43339.

    Article  CAS  Google Scholar 

  45. Schaefer, W., J. T. Regula, M. Bähner, J. Schanzer, R. Croasdale, H. Dürr, C. Gassner, G. Georges, H. Kettenberger, S. Imhof-Jung, M. Schwaiger, K. G. Stubenrauch, C. Sustmann, M. Thomas, W. Scheuer, and C. Klein (2011) Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc. Natl. Acad. Sci. USA. 108: 11187–11192.

    Article  CAS  Google Scholar 

  46. Spiess, C., M. Merchant, A. Huang, Z. Zheng, N.-Y. Yang, J. Peng, D. Ellerman, W. Shatz, D. Reilly, D. G. Yansura, and J. M. Scheer (2013) Bispecific antibodies with natural architecture produced by co-culture of bacteria expressing two distinct half-antibodies. Nat. Biotechnol. 31: 753–758.

    Article  CAS  Google Scholar 

  47. Spiess, C., J. Bevers, J. Jackman, N. Chiang, G. Nakamura, M. Dillon, H. Liu, P. Molina, J. M. Elliott, W. Shatz, J. M. Scheer, G. Giese, J. Persson, Y. Zhang, M. S. Dennis, J. Giulianotti, P. Gupta, D. Reilly, E. Palma, J. Wang, E. Stefanich, H. Scheerens, G. Fuh, and L. C. Wu (2013) Development of a human IgG4 bispecific antibody for dual targeting of interleukin-4 (IL-4) and interleukin-13 (IL-13) cytokines. J. Biol. Chem. 288: 26583–26593.

    Article  CAS  Google Scholar 

  48. Jung, S. T., S. T. Reddy, T. H. Kang, M. J. Borrok, I. Sandlie, P. W. Tucker, and G. Georgiou (2010) Aglycosylated IgG variants expressed in bacteria that selectively bind FcãRI potentiate tumor cell killing by monocyte-dendritic cells. Proc. Natl. Acad. Sci. USA. 107: 604–609.

    Article  CAS  Google Scholar 

  49. Jung, S. T., W. Kelton, T. H. Kang, S. T. W. Ng, J. T. Andersen, I. Sandlie, C. A. Sarkar, and G. Georgiou (2013) Effective phagocytosis of low Her2 tumor cell lines with engineered, aglycosylated IgG displaying high FcãRIIa affinity and selectivity. ACS Chem. Biol. 8: 368–375.

    Article  CAS  Google Scholar 

  50. Jung, S. T., T. H. Kang, W. Kelton, and G. Georgiou (2011) Bypassing glycosylation: engineering aglycosylated full length IgG antibodies for human therapy. Curr. Opin. Biotechnol. 22: 858–867.

    Article  CAS  Google Scholar 

  51. Ju, M. S. and S. T. Jung (2014) Aglycosylated full-length IgG antibodies: Steps toward next-generation immunotherapeutics. Curr. Opin. Biotechnol. 30: 128–139.

    Article  CAS  Google Scholar 

  52. Sazinsky, S. L., R. G. Ott, N. W Silver, S. Tidor, J. V. Ravetch, and K. D. Wittrup (2008) Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors. Proc. Natl. Acad. Sci. USA. 105: 20167–20172.

    Article  CAS  Google Scholar 

  53. Jung, S. T., T. H. Kang, and D. I. Kim (2014) Engineering an aglycosylated Fc variant for enhanced FcãI engagement and pHdependent human FcRn binding. Biotechnol. Bioproc. Eng. in press

    Google Scholar 

  54. Bostrom, J., S.-F. Yu, D. Kan, B. A. Appleton, C. V. Lee, K. Billeci, W. Man, F. Peale, S. Ross, C. Wiesmann, and G. Fuh (2009) Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Sci. 323: 1610–1614.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Taek Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, S., Jung, S.T. Engineering antibodies for dual specificity and enhanced potency. Biotechnol Bioproc E 20, 201–210 (2015). https://doi.org/10.1007/s12257-014-0575-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0575-6

Keywords

Navigation